
CSE231: Operating Systems

Lecture 10: Inter-Process
Communication in Distributed

Memory
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

Last Lecture
Homer Process

(CPU 0)
Sem

(empty)
Sem
(full)

Marge Process
(CPU 1)

Action Process
State

Sem
Value

Sem
Value

Action Process
State

Forked Ready 1 0 Forked Ready

wait(full) Blocked 0 -1 wait(empty) Running

Blocked 0 -1 Bake Cookie-1 Running

Ready 0 0 post(full) Running

Eat Cookie-1 Running -1 0 wait(empty) Blocked

post(empty) Running 0 0 Ready

wait(full) Blocked 0 -1 Bake Cookie-2 Running

Ready 0 0 post(full) Running

……. …….

3

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

Today’s Class
● IPC in distributed memory

o Message Passing Interface

● Quiz-2

4

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

Distributed Memory ● Several machines (e.g., workstations)
connected together in a cluster with
some interconnect (e.g., ethernet)
o Easy to scale computing resources. E.g.,

ten desktops each having a 10-core
processor would result in 100-core
processing power in a cluster (a.k.a.
Beowulf cluster)

o Supercomputers are similar but with high-
end processors and interconnects

o Grid computing is also similar, but the
machines are not inside a single room but
can be in different countries/location
connected with internet (it is a type of
distributed computing instead of cluster
computing)

● One big computation can be divided
equally into N number of sub-
computations that can run on N
different processes
o 1x1 mapping between a process and a

core in the cluster

5

Picture source: https://cs.boisestate.edu/~amit/research/beowulf/cluster-small.jpg

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

Organization of a Distributed Memory Multiprocessor

● Figure-a
o Host processor (Pc) connected to a cluster of processor nodes (P0 … Pm)
o Processors P0 … Pm communicate via an interconnection network

● Figure-b
o Each processor node consists of a processor, memory, and a Network Interface Card

(NIC) connected to a router (R) in the interconnect
6 Slide adapted from COMP322 course of Rice University

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

Distributed Memory
● Distributed memory

access latency
slowest in the
memory hierarchy

● Each process has
access to the
memory on the local
system as well as
the memory on the
remote machines

● Processes
communicate with
each other using
inter-process
communication

7

Picture source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

IPC in Distributed Memory
● Processes communicate in distributed memory by

exchanging messages with each other
o For example, client-server model that uses sockets based

communication

● In this course we will only introduce a simple to use runtime
library for exchanging messages between processes
o Message Passing Interface (MPI) that provides a set of standard and

portable APIs for parallel computing in distributed memory (as well
as between the processes running in a shared memory)

8

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

Introduction to Parallel Computing

9 Slide adapted from COMP322 course of Rice University

Serial (sequential) computing Parallel computing

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

Message Passing Interface (MPI)

● The logical view of a machine supporting
the message-passing paradigm consists
of p processes, each with its own
exclusive address space, that are capable
of executing on different nodes in a
distributed-memory multiprocessor
1. Each data element must belong to one of

the partitions of the space; hence, data
must be explicitly partitioned and placed.

2. All interactions (read-only or read/write)
require cooperation of two processes -
the process that has the data and the
process that wants to access the data.

● In this loosely synchronous model,
processes synchronize infrequently to
perform interactions. Between these
interactions, they execute completely
asynchronously.

10 Slide adapted from COMP322 course of Rice University

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

Single Program Multiple Data (SPMD)
● Single Program executed by both

the parent and child processes but
with different halves of the same
array (Multiple Data)
o Parent calculate the sum of first half

of the arrays whereas the child
calculate the sum of the second half

● The problem(s)
o How the child and parent would

communicate their partial results to
get the total sum?

o What if we have a huge array size
that could be faster to compute with
multiple processes, some of which
would be running on a shared
memory whereas the rest on
distributed memory?
§ Imagine the difficulty in writing such

a program

11

void array_sum() {
 int A[SIZE]; //initialized
 int sum=0;
 if(fork() == 0) {
 printf(“I am the child process\n”);
 for(int i=SIZE/2; i<SIZE; i++) sum += A[i];
 exit(0);
 }
 printf(“I am the parent process\n”);
 for(int i=0; i<SIZE/2; i++) sum += A[i];
 wait(NULL);
 return 0;
}

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

SPMD Using the MPI

● Run the same program on P processing elements (PEs)
● Use the “rank” … an ID ranging from 0 to (P-1) … to determine

what computation is performed on what data by a given PE
● Different PEs can follow different paths through the same code

12

Process_1
(rank=0)

Process_2
(rank=1)

Process_3
(rank=2)

Process_4
(rank=3)

Slide adapted from COMP322 course of Rice University

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

General MPI Program Structure

13

● Write one program that
will execute on each
process

● Each of the N processes
will have a unique rank
(0 – N-1)

● Processes will
communicate via
messages for non-local
data accesses

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

The Hello World Program in MPI (1/3)

● MPI_Init and
MPI_Finalize APIs
are used for
initializing and
cleanup the MPI
environment
(runtime)

14

// the header file containing MPI APIs
#include <mpi.h>
int main(int argc, char **argv) {
 // Initialize the MPI runtime
 MPI_Init(&argc, &argv);
 int rank, nprocs;
 // Get the total number of processes in MPI_COMM_WORLD
 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
 // Get the rank of this process in MPI_COMM_WORLD
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 printf(“My rank is %d in world of size %d\n”, rank, nprocs);
 // Terminate the MPI runtime
 MPI_Finalize();
 return 0;
}

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

The Hello World Program in MPI (2/3)
● Compile the program as

“mpicc program.c” (first
install MPI using sudo apt-
get install mpich)

● Run the program as
“mpirun -np 4 ./a.out”
where 4 is the total number
of MPI processes to be
created

● MPI_COMM_WORLD is
the name of the group that
contains the processes
created by the user using
mpirun command (e.g., 4
above)
o Total number of processes

in the group
(MPI_COMM_WORLD) can
be enquired using the
MPI_Comm_size API

15

// the header file containing MPI APIs
#include <mpi.h>
int main(int argc, char **argv) {
 // Initialize the MPI runtime
 MPI_Init(&argc, &argv);
 int rank, nprocs;
 // Get the total number of processes in MPI_COMM_WORLD
 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
 // Get the rank of this process in MPI_COMM_WORLD
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 printf(“My rank is %d in world of size %d\n”, rank, nprocs);
 // Terminate the MPI runtime
 MPI_Finalize();
 return 0;
}

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

The Hello World Program in MPI (3/3)
● Each of the

processes will get a
unique rank (id) in the
group
MPI_COMM_WORLD
that can be enquired
using the
MPI_Comm_rank API

● MPI rank can be used
to decide what will
execute on which
process

16

// the header file containing MPI APIs
#include <mpi.h>
int main(int argc, char **argv) {
 // Initialize the MPI runtime
 MPI_Init(&argc, &argv);
 int rank, nprocs;
 // Get the total number of processes in MPI_COMM_WORLD
 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
 // Get the rank of this process in MPI_COMM_WORLD
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 printf(“My rank is %d in world of size %d\n”, rank, nprocs);
 // Terminate the MPI runtime
 MPI_Finalize();
 return 0;
}

There is no user data being exchanged in this program. We will see
message exchange in the next slides. Each process will simply print their

rank and total number of processes invoked by the user

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

Parallel Array Sum Using MPI (1/4)
● These four APIs

are must in any
parallel program
being written
using MPI

● There are more
than 120 APIs in
MPI, but we will
only restrict our
discussion to
only six APIs

17

int main(int argc, char **argv) {
 int rank=0, nproc=4;
 MPI_Init(&argc, &argv);
 // 1. Get to know your world
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &nproc);
 int array[SIZE]; // initialized and assume (SIZE % nproc = 0)
 // 2. calculate local sum
 int my_sum = 0, chunk = SIZE/nproc;
 for (int i=rank*chunk; i<(chunk+1)*rank; i++) my_sum += array[i];
 // 3. All non-root processes send result to root processes (rank=0)
 if(rank > 0) {
 MPI_Send(&my_sum, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);
 }
 else { // executed only at rank=0
 int total_sum = my_sum, tmp;
 for(int src=1; src<nproc; src++) {
 MPI_Recv(&tmp, 1, MPI_INT, src, 0, MPI_COMM_WORLD, &status);
 total_sum += tmp;
 }
 }
 MPI_Finalize();
}

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

Parallel Array Sum Using MPI (2/4)
● The array initialization is

happening for each of the
MPI process. Hence, each
process has the exactly
same array, but a separate
copy in their own address
space
o In reality, the array could

be read from disk in
parallel by each
processes (chunk size)

● For simplicity, we are
assuming the array can be
divided into equal sized
chunk depending on the
total number of MPI
processes

● Each MPI process
calculate the sum of its
own chunk

● The variable “my_sum” is
local to each process

18

int main(int argc, char **argv) {
 int rank=0, nproc=4;
 MPI_Init(&argc, &argv);
 // 1. Get to know your world
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &nproc);
 int array[SIZE]; // initialized and assume (SIZE % nproc = 0)
 // 2. calculate local sum
 int my_sum = 0, chunk = SIZE/nproc;
 for (int i=rank*chunk; i<(chunk+1)*rank; i++) my_sum += array[i];
 // 3. All non-root processes send result to root processes (rank=0)
 if(rank > 0) {
 MPI_Send(&my_sum, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);
 }
 else { // executed only at rank=0
 int total_sum = my_sum, tmp;
 for(int src=1; src<nproc; src++) {
 MPI_Recv(&tmp, 1, MPI_INT, src, 0, MPI_COMM_WORLD, &status);
 total_sum += tmp;
 }
 }
 MPI_Finalize();
}

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

Parallel Array Sum Using MPI (3/4)
● Non-root rank use

MPI_Send API to send the
value of their local variable
my_sum

● Parameters to MPI_Send
are
1. Address of the variable (or

array) to be send
2. Total count of data being

sent (it will be the size of
array when being sent)

3. Platform independent
name of the data type that
MPI can understand
(MPI_INT, MPI_FLOAT,
MPI_DOUBLE,
MPI_CHAR, etc.)

4. Rank of the receiver
process (0 in this case)

5. Tag (you can ignore it for
now and simply pass 0 at
all places)

6. The group name
MPI_COMM_WORLD

19

int main(int argc, char **argv) {
 int rank=0, nproc=4;
 MPI_Init(&argc, &argv);
 // 1. Get to know your world
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &nproc);
 int array[SIZE]; // initialized and assume (SIZE % nproc = 0)
 // 2. calculate local sum
 int my_sum = 0, chunk = SIZE/nproc;
 for (int i=rank*chunk; i<(chunk+1)*rank; i++) my_sum += array[i];
 // 3. All non-root processes send result to root processes (rank=0)
 if(rank > 0) {
 MPI_Send(&my_sum, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);
 }
 else { // executed only at rank=0
 int total_sum = my_sum, tmp;
 for(int src=1; src<nproc; src++) {
 MPI_Recv(&tmp, 1, MPI_INT, src, 0, MPI_COMM_WORLD, &status);
 total_sum += tmp;
 }
 }
 MPI_Finalize();
}

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

Parallel Array Sum Using MPI (4/4)
● Root rank will use

(nproc-1) number of
MPI_Recv API to
receive the message
being sent by (nproc-1)
number of processes

● Parameters to
MPI_Recv are exactly
same as in MPI_Recv
with few minor changes
o The first parameter is

the buffer used to store
the message receive
from the destination. It
must be of the same
size and datatype as in
the sender side

o The fourth parameter is
the rank of the sender

o You can ignore the last
parameter and simply
pass it as NULL

20

int main(int argc, char **argv) {
 int rank=0, nproc=4;
 MPI_Init(&argc, &argv);
 // 1. Get to know your world
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &nproc);
 int array[SIZE]; // initialized and assume (SIZE % nproc = 0)
 // 2. calculate local sum
 int my_sum = 0, chunk = SIZE/nproc;
 for (int i=rank*chunk; i<(chunk+1)*rank; i++) my_sum += array[i];
 // 3. All non-root processes send result to root processes (rank=0)
 if(rank > 0) {
 MPI_Send(&my_sum, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);
 }
 else { // executed only at rank=0
 int total_sum = my_sum, tmp;
 for(int src=1; src<nproc; src++) {
 MPI_Recv(&tmp, 1, MPI_INT, src, 0, MPI_COMM_WORLD, NULL);
 total_sum += tmp;
 }
 }
 MPI_Finalize();
}

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

Amdahl’s Law
● If 50% of your

application is parallel
and 50% is serial, you
can’t get more than a
factor of 2 speedup, no
matter how many
processors it runs on
o TTotal = Tseq + Tpar
o With infinite processors

(or cores), Tpar =0
(theoretically) implying
TTotal = Tseq

21 Slide adapted from COMP322 course of Rice University

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

Reading Material
● Tutorial on MPI by LLNL

o https://hpc-tutorials.llnl.gov/mpi/

22

CSE231: Operating Systems

Lecture 10: Inter-process communication in distributed memory

© Vivek Kumar

Next Lecture
● Process scheduling
● Assignment 2 will be released tomorrow!

23

