
CSE231: Operating Systems

Lecture 11: Introduction to
Process Scheduling

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

Last Lecture ● Several machines
(e.g., workstations)
connected together in
a cluster with some
interconnect

● One big computation
can be divided equally
into N number of sub-
computations that can
run on N different
processes

● Processes use MPI to
communicate in
distributed memory by
exchanging messages
with each other

● Amdhal’s law: if 50% of
your application is
parallel and 50% is
serial, you can’t get
more than a factor of 2
speedup, no matter
how many processors
it runs on

1

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

Today’s Class
● Introduction to process scheduling

o Context switch
o Process scheduling policies

In this course, we will not have any assignment involving
carrying out changes inside any operating systems. Still, to
understand some concepts, we would revisit well-known OS,
such as xv6 OS – as in today’s lecture!

2

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

Process State in these Scenarios?
1. Write on pipe that is currently full
2. scanf() waiting for user input
3. Recursive Fibonacci number

calculation
4. Process executing sem_wait when

o Semaphore > 0
o Semaphore <= 0

5. Process executing sem_post
6. sleep()
7. wait()

3

Assume
infinite

number of
CPU cores

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

Process State in these Scenarios?
1. Write on pipe that is currently full
2. scanf() waiting for user input
3. sleep()
4. wait()
5. Process executing sem_wait when

o Semaphore <= 0
6. Recursive Fibonacci number

calculation
7. Process executing sem_wait when

o Semaphore > 0
8. Process executing sem_post

4

Assume
infinite

number of
CPU cores

Blocking for
some resources

Running until
termination

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

How OS Can Juggle Between Processes?
● Case-1: Whenever a process is blocking for some resource

o It does not make any sense to let a blocked process running on the CPU (e.g.,
waiting for IO, sem_wait, reading from an empty pipe, etc.)
§ Even if the CPUs are idle

o OS can safely move the process from the running to waiting queue
§ Does not affect the performance as if CPUs are idle, the process can be brought

back into the running queue as soon as it unblocks

● Case-2: If a process is not blocking for some resource (running until
termination)
o Timer interrupt is generated by the CPU

§ It is a hardware generated interrupt at a fixed interval
o It is used to trigger the scheduling by moving the currently running process

into the ready queue, and another process from the ready queue into the
running queue

5

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

Case-1: Process is Going to Block
● The user process P1 calls a blocking API (e.g.,

sleep on an empty pipe)
● P1 switches its execution from the user stack to

its kernel stack (each user process has its own
kernel stack)
o User context is saved on the bottom of the kernel

stack and interrupt handler is invoked
o The blocking system call will eventually call some

sleep implementation
● The sleep will invoke a call to the CPU

scheduler, which will: a) save the kernel context
of the user process at the top of the kernel stack,
b) load the context of the CPU scheduler from
the corresponding stack, and c) jump to the CPU
scheduler stack where it will call the schedule()
routine

● Each CPU has its own CPU scheduler process
that runs on a separate kernel stack than that of
the process it was originally executing
o Why?

6

User
Space

Kernel
Space

Process-P1

scheduler()

Bottom

Top

libc sleep()

User context
Saved for P1

sleep()

callScheduler()

Kernel context
Saved for P1

Bottom

Top

sleep()

Scheduler
process of the
current core

 P1

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

Case-2: Process is Running until Termination
● There could be several

Fibonacci processes being
displayed in running state from
htop on a 4-core processor
o However, only four of them are

actually in running state any
given time (1-1 mapping
between a process and a core)

● Timer interrupt (IDT index 32
on x86) is generated by the
hardware after every fixed
intervals

7

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

● Timer interrupt moves the process execution
from user stack to its kernel stack (each user
process has its own kernel stack)

● User context is saved on the bottom of the
kernel stack and interrupt handler is invoked

● The handler will call yield() method as it was a
timer interrupt

● The yield will invoke a call to the CPU
scheduler, which will: a) save the kernel
context of the user process at the top of the
kernel stack, b) load the context of the CPU
scheduler from the corresponding stack, and c)
jump to the CPU scheduler stack where it will
call the schedule() routine

● Each CPU has its own CPU scheduler process
that runs on a separate kernel stack than that
of the process it was originally executing

8

User
Space

Kernel
Space

Bottom
User context
Saved for P1

InterruptHandler()

yield()

callScheduler()

Kernel context
Saved for P1

Bottom

Top

Process-P1

Case-2: Process is Not Going to Block

scheduler()

Bottom

Top

Scheduler
process of the
current core

 P1

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

The Context Switch – swtch(OldCtx, NewCtx)
● Typical steps for calling a context switch on x86

1. Load the parameters passed to the context switching routine in
registers, as it is currently on the kernel stack of the user process
§ Parameters would be the context of current process that has to be saved,

and the context of the scheduler process that has to be restored
• The context of the current process will no longer be accessible as the ESP

will not be pointing to the old stack after context switch

9

2. Load context of the scheduler
process
a) Load the callee save registers

(EBX, ESI, and EDI), EBP, and
ESP from the “top” of scheduler
process stack

b) Load EIP from scheduler stack
and jump to that instruction
address

CSE231: Operating Systems

Lecture 04: Procedure Calling Convention

© Vivek Kumar

Caller and Callee Save Registers
● Recall, there are six general purpose registers that can be used

to store temporary data during a method execution
● If the caller is using these registers, it must save each of these 6

registers before transferring the call to the callee
● However, it could be possible that callee doesn’t use all these

registers. Hence, the saving and restoring of these 6 registers is
divided across both caller and the callee

● If the caller method is using these data registers then it
saves/restore only these 3 on its call stack before/after method
call: EAX, EDX, and ECX

● If the callee method wants to use these 3 registers then it
saves/restore the current value on its call stack at entry/exit:
EBX, ESI, and EDI

38

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

The Juggling API: scheduler
● Basic questions about the design

o How many scheduler processes should be there in an OS?
o How many copies of process table should be there in the OS?

§ Process table is an array of PCB
o Can there be any race on the process table accesses?

§ How to resolve?

10

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

Who Calls the scheduler
● OS is booted with the help of another

program called bootloader
o Reads the kernel ELF executable
o Loads the program segments
o Jump to the entry point (kernel_main)
o Call never returns to bootloader (similar

to exec)
● Kernel main

o Complete the basic setup (initializing
CPUs, memory, disk, registers, etc.)

o Launch the first user process (?)
o Launch one scheduler process on each

CPU that will eventually pick a process
from the process table and start
executing it until it gives up the CPU (see
case-1 and case-2 in previous slides)

11

kernel_main() {
 setup();
 init_all_cpus();
 start_init_process(); // on CPU-0
 for(int cpu=1; cpu<numCPUs; cpu++) {
 launch(cpu, scheduler);
 }
 scheduler(); // on CPU-0
}

POST (Power on Self Test)

Locate & Load Bootloader (e.g., GRUB)

Initialize hardware (e.g., DRAM)

Load OS and jump to entrypoint (kernel main)

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

The Juggling API: scheduler Pseudocode
● Scheduler job is to

simply pick a process
from the process table

● Context switch of the
scheduler process with
the process picked
from the process table

● Execute the process
from the point it was
previously stopped

● When the control will
be passed back to
scheduler from this
process?

12

void scheduler() {
 while(true) {
 lock(process_table);
 foreach(Process p: scheduling_algorithm(process_table)) {
 if(p->state != READY) {
 continue;
 }
 p->state = RUNNING;
 unlock(process_table);
 swtch(scheduler_process, p);
 // p is done for now..
 lock(process_table);
 }
 unlock(process_table);
 }
}

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

The Juggling API: scheduler Pseudocode
● The scheduler should

pay attention that the
process picked up from
the process table is in
READY state (should
not be in WAITING
state)

● It should change the
state of this process
from READY to
RUNNING

● When control is passed
back to the scheduler
from this process, its
state would have
changed to either
READY or WAITING

13

void scheduler() {
 while(true) {
 lock(process_table);
 foreach(Process p: scheduling_algorithm(process_table)) {
 if(p->state != READY) {
 continue;
 }
 p->state = RUNNING;
 unlock(process_table);
 swtch(scheduler_process, p);
 // p is done for now..
 lock(process_table);
 }
 unlock(process_table);
 }
}

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

The Juggling API: scheduler Pseudocode
● There is a single

process table on a
system irrespective of
the number of CPUs

● Proper locking
mechanism must be
ensured to avoid any
race condition on the
process table by the
scheduler processes
running at other CPUs

● Modern OS may use
scalable
implementations of
locking to improve
performance

14

void scheduler() {
 while(true) {
 lock(process_table);
 foreach(Process p: scheduling_algorithm(process_table)) {
 if(p->state != READY) {
 continue;
 }
 p->state = RUNNING;
 unlock(process_table);
 swtch(scheduler_process, p);
 // p is done for now..
 lock(process_table);
 }
 unlock(process_table);
 }
}

Does it looks familiar?
What would happen if

unlock isn’t called?

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

The Juggling API: scheduler Pseudocode
● Process

scheduling
algorithm plays an
important role in
the design of
operating system

● Different
algorithms are
chosen according
to the need

15

void scheduler() {
 while(true) {
 lock(process_table);
 foreach(Process p: scheduling_algorithm(process_table)) {
 if(p->state != READY) {
 continue;
 }
 p->state = RUNNING;
 unlock(process_table);
 swtch(scheduler_process, p);
 // p is done for now..
 lock(process_table);
 }
 unlock(process_table);
 }
}

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

Today’s Class
● Introduction to process scheduling

o Context switch
o Process scheduling policies

§ First In First Out / First Come First Serve
§ Shortest Job First

Acknowledgements: Lecture content derived from the CS162
course offered at University of California, Berkeley

16

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

Context Switch: Cost?

0

2

4

6

8

10

12

32 128 512 2048 8192

17

Total processes

C
on

te
xt

 s
w

itc
h

tim
e

(m
ic

ro
 s

ec
on

ds
)

● Context switch overhead
measured on an AMD
EPYC 32-core processor
running Ubuntu 18.04.3
LTS
o Data generated using

lmbench benchmark
(./lat_ctx –s 0 32 128 512
2048 8192)

● Overheads
o Timer interrupt latency
o Saving restoring context
o Process scheduling
o Loss in cache locality

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

CPU and I/O Bursts
● Process execution model: programs

alternate between bursts of CPU
and I/O
o Program typically uses the CPU for

some period of time, then does I/O,
then uses CPU again

o Each scheduling algorithm is about
which process to give to the CPU for
use by its next CPU burst

o With time slicing, process may be
forced to give up CPU before finishing
current CPU burst

18 Silberschatz, Galvin and Gagne ©2013

CPU burst
load store
add store
read from file

store increment
index
write to file

load store
add store
read from file

wait for I/O

wait for I/O

wait for I/O

I/O burst

I/O burst

I/O burst

CPU burst

CPU burst

•
•
•

•
•
•

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

Key Scheduling Goals
● Response Time

o What user sees: time to echo a keystroke in editor
● Throughput

o Total operations per second
§ Affected by the overheads of context switching

● Fairness
o Conflicts with the response time

● Starvation
o Due to improper resource allocation policy

19

CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Run tasks in order of arrival.

Run task until completion (or blocks on IO).
No preemption

Also called FIFO

First-Come, First-Served (FCFS)

CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Process Burst Time

P1 3

P2 3

P3 24
0 3 6 30

P3P2P1

What is the average completion time?

What is the average waiting time?

("#$#"%" = 13)

(%#"#$" = 3)

First-Come, First-Served (FCFS)

CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Process Burst Time

P3 24

P2 3

P1 3 0 24 27 30

P3P2P1

What is the average completion time?

What is the average waiting time?

(&'#&(#"%
"

= 27)

(%#&'#&(
"

= 17)

First-Come, First-Served (FCFS)

CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Can there be Convoy Effect in FCFS?
Convoy effect: Short process stuck behind long process

CPU P1 P2

CPU P2

CPU P3 P4 P5 P6

FIFO/FCFS very sensitive to arrival order
Lots of small tasks build up behind long tasks

FIFO is non-preemptible

Can FIFO lead to starvation?

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

Today’s Class
● Introduction to process scheduling

o Context switch
o Process scheduling policies

§ First In First Out / First Come First Serve
§ Shortest Job First

Acknowledgements: Lecture content derived from the CS162
course offered at University of California, Berkeley

24

CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Shortest Job First

How can we minimize average completion time?

By scheduling jobs in order of
estimated completion time

CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Process Burst Time

P1 3

P2 6

P3 24

P4 1
0 1 4 10

P1P4

What is the average completion time? ()#'#)%#"'
'

= 12.25)

P2 P2

34

Shortest Job First

CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Can SJF Lead to Starvation?

CPU P2P1

Any scheduling policy that always favours a fixed
property for scheduling leads starvation

P2 P3CPU P1

P2 P4CPU P3

CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Can there be Convoy Effect in SJF?

P2

Any non-preemptible scheduling policy suffers
from convoy effect

CPU

CPU P2

CPU P2 P4 P5 P6

CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Summary

Property FCFS SJF

Optimize Average
Completion Time

Prevent Starvation

Prevent
Convoy Effect

Psychic Skills NOT
Needed

If jobs arrive
simultaneously

Any scheduling policy that
always favors a fixed

property for scheduling
leads to starvation

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

Reference Material
● https://pdos.csail.mit.edu/6.828/2018/xv6/book-rev11.pdf

o You may read the chapter-5 just to have a high-level
understanding of scheduling and context switch in a simple OS

o You can avoid referring to the xv6 codebase as we will not have
any assignment on reading/modifying xv6 code

30

https://pdos.csail.mit.edu/6.828/2018/xv6/book-rev11.pdf

CSE231: Operating Systems

Lecture 11: Introduction to process scheduling

© Vivek Kumar

Next Lecture
● Process scheduling policies

31

