Lecture 12: Process scheduling policies

Lecture 12: Process Scheduling
Policies

Vivek Kumar
Computer Science and Engineering
IHIT Delhi
vivekk@iiitd.ac.in

E CSEZ231: Operating Systems

void scheduler() {

Last Lecture aile(ee)

foreach(Process p: scheduling_algorithm(process_table)) {
if(p->state != READY) {

POST (Power on Self Test) continue;
}
p->state = RUNNING;
Locate & Load Bootloader (e.g., GRUB) unlock(process_table);

swtch(scheduler_process, p);

e // p is done for now..
Initialize hardware (e.g., DRAM) lock(process_table);
‘ }
Load OS and jump to entrypoint (kernel main) unlock(process_table);
}

_— } 7

‘/
kernel main() {
setup();
init_all cpus(); " propery | fas | sk
start_init_process(); // on CPU-8 Optimize Average x \/
for(int cpu=1; cpu<numCPUs; cpu++) { Completion Time
launch(cpu, scheduler); Prevent Starvation V x
} Prevent
scheduler(); // on CPU-© Convoy Effect x x
} Psychic Ski x
sychic Skills NOT
7 Needed V

o lewsrPosssheaungpoldes
Today’s Class

® Process scheduling policies

o Shortest Time to Completion First
o Round Robin

o Multi-level feedback scheduling

O

Linux Completely Fair Scheduler (CFS)

Acknowledgements: Lecture content derived from the CS162
course offered at University of California, Berkeley

1D

o tecweizPocessscheddngpoldes
Shortest Time to Completion First (STCF)

Introduce the notion of preemption

A running task can be de-scheduled before completion.

STCF

Schedule the task with the least amount of time left

1D

o tecweizPocessscheddngpoldes
Shortest Time to Completion First (STCF)

Process Burst Time (left) Arrival Time
P1 3 10
Schedule the
. P 6 1
task with the
least amount Ps 24 0
of time left

1D

o tecweizPocessscheddngpoldes
Shortest Time to Completion First (STCF)

Process Burst Time (left) Arrival Time
P1 3 10
Schedule the
. P, 6]]
task with the
least amount P, 23 0]

of time left

o tecweizPocessscheddngpoldes
Shortest Time to Completion First (STCF)

Process Burst Time (left) Arrival Time
P1 3 10
Schedule the
. P 0 1
task with the
least amount Ps 23 0
of time left

1D

o tecweizPocessscheddngpoldes
Shortest Time to Completion First (STCF)

Process Burst Time (left) Arrival Time
B 3 y]
Schedule the > 0
task with the ’ 1
least amount [P3 20 0]
of time left
P, 16 18

1D

o tecweizPocessscheddngpoldes
Shortest Time to Completion First (STCF)

Process Burst Time (left) Arrival Time
P1 O 10
Schedule the
. P, 0 1
task with the)
least amount Ps 15 0
of time left)

1D

Lecture 12: Process scheduling policies

Shortest Time to Complehon First (STCF)

Process Burst left Arrival Time
P 10
Schedule the > 0
task with the ? I
P, 0 0
P, 15 18

33

E CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Lecture 12: Process scheduling policies

Shortest Time to Complehon First (STCF)

Process Burst left Arrival Time
P 10
Schedule the > 0
task with the ? I
P, 0 0
P, 15 18

n

32

E CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

. lecurizPrcessscheduingpoices
Are we done?

Can STCF lead to starvation?

Yes

Any scheduling policy that always favours a fixed
property for scheduling leads starvation

No change!

1D

. lecurizPrcessscheduingpoices
Are we done?

Is STCF subject to the convoy effect?

No!

STCF is a preemptible policy

o lewsrPosssheaungpoldes
Today’s Class

® Process scheduling policies

o Shortest Time to Completion First
o Round Robin

o Multi-level feedback scheduling

O

Linux Completely Fair Scheduler (CFS)

Acknowledgements: Lecture content derived from the CS162
course offered at University of California, Berkeley

1D

o lewerPosssscedungpoloes
Round-Robin Scheduling

RR runs a job for a time slice

(a scheduling quantum)
Once time slice over,

Switch to next job in ready queue.

=> Called time-slicing

1D

- lecweiPoessschedungpoides
RR with Time Quantum = 20

Process Burst Time
P; 68
P, 24

1D

- lecweiPoessschedungpoides
RR with Time Quantum = 20

Process Burst Time
Pl 53 => 33
P; 68
P, 24

1D

- lecweiPoessschedungpoides
RR with Time Quantum = 20

Process Burst Time
P, 33
P2 8 => O
P; 68
P, 24

1D

- lecweiPoessschedungpoides
RR with Time Quantum = 20

Process Burst Time
P, 33
P; 68 => 48
P, 24

0 20 28 48

1D

- lecweiPoessschedungpoides
RR with Time Quantum = 20

Process Burst Time
P, 33
P, 0
P; 48
P4 24 => 4

0 20 28 48 68

1D

- lecweiPoessschedungpoides
RR with Time Quantum = 20

Process Burst Time
P, 33=>13
P, 0
P; 48
P4 4

1D

- lecweiPoessschedungpoides
RR with Time Quantum = 20

Process Burst Time
P, 13
P3 48 => 28
P, 4

0 20 28 48 68 88 108

1D

- lecweiPoessschedungpoides
RR with Time Quantum = 20

Process Burst Time
P, 13
P, 0
P; 28
P4 4 => O

1D

- lecweiPoessschedungpoides
RR with Time Quantum = 20

Waiting time P,= 0 + (68-20)+(112-88)=72
« P,=(20-0)=20
P,=(28-0)+(88-48)+(125-108)+0=85
P,=(48-0)+(108-68)=88

72+20+85+88

Average waiting time (= 66.25)

Average completion time (125F+28+153+112 _ 14 55

4

0 20 28 48 68 88 108 112 125 145 153

I

o ewerPosessshewingpolees
RR Quantum

® Assume there is no context switching overhead

® What happens to average completion time when we decrease Q?

1D

o lewerPosssscedungpoloes
Switching is not free!

Small scheduling quantas lead to
frequent context switches
- Context switch overhead
- Trash cache-state

g must be large with respect to context switch,
otherwise overhead is too high

1D

. lecurizPrcessscheduingpoices
Are we done?

Can RR lead to starvation?

No

1D

. lecurizPrcessscheduingpoices
Are we done?

Can RR suffer from convoy effect?

No

Only run a time-slice at a time

1D

o werPemsssnedungploes
summary

rers | sF | stce | RR___ I iigh in case of

Optimize long running

Average x V processes
Completion
Time
Optimize Doesn’t favor
Average x x any fixed
Waiting Time property

Due to time
slicing

Prevent x x
Convoy Effect
Psychic Skills V x
NOT Needed

1D

v
X v
— R R
4
X Vv

o lewsrPosssheaungpoldes
Today’s Class

® Process scheduling policies

o Shortest Time to Completion First
o Round Robin

o Multi-level feedback scheduling
O

Linux Completely Fair Scheduler (CFS)

Acknowledgements: Lecture content derived from the CS162
course offered at University of California, Berkeley

1D

. leuetaProcessscheduingpoides
What we Want?

It cannot be achieved without
having psychic skills

Would it be true for
|O/interactive jobs
having short CPU
bursts?

Property
Optimize Average Completion Time V

Optimize Average Waiting Time x

Prevent Starvation x V
Prevent Convoy Effect V V

Psychic Skills NOT Needed x

1D

Lecture 12: Process scheduling policies

Approximation of CPU Bursts using Priority Scheduling

Priority 3 Job | Job 2 Job 3
Priority 2 Job 4

Priority |

Priority O Job 5 Job 6 Job 7

® Priority scheduling always run the ready process (or job) with
highest priority

® Systems may try to set priorities according to some policy goal
o Example: Give IO/interactive jobs higher priority than long calculation

® How to achieve fairness and avoid starvation?
o Elevate priority of threads that don't get CPU time

[E CSE231: Operating Systems Crooks CS162 © UCB Fall 2022 46

Lecture 12: Process scheduling policies

Multi-level Feedback Queue

[High Priority] Q8 —> @ —_
Q7

Q6
Q5

Q4—>@

Q3

Q2
[Low Priority] Q1 —>@

Figure 8.1: MLFQ Example

E CSEZ231: Operating Systems

® Create distinct queues for ready
processes, each assigned a different
priority level

® All processes belong to any one queue
at any given time

® Processes can move between queues

® Use priorities to decide from which
gueue process should be picked next

® Individual queues run RR with increasing
time slice

Crooks CS162 © UCB Fall 2022

o ecweizPocessscheddngpoldes
MLFQ (Naive Version)

Rule 1
If Priority(A) > Priority(B) (different queues)
A runs (B doesn’t).

Rule 2
If Priority(A) = Priority(B), A & B run in RR.

Key question:
How do you set the priorities?

Vary the priority of a job based on its observed behavior

1D

o lewerPosssscedungpoloes
Learning behavior

Rule 3

When a job enters the system, it is placed at the highest priority
(the topmost queue).

Rule 4a

If a job uses up an entire time slice while running, its priority is
reduced (i.e., it moves down one queue).

1D

Lecture 12: Process scheduling policies

I—ea rning behaViOr P, Long running CPU-bound

E CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Lecture 12: Process scheduling policies

I—ea rning behaViOr P, Long running CPU-bound

E CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Lecture 12: Process scheduling policies

I—ea rning behaViOr P, Long running CPU-bound

E CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Lecture 12: Process scheduling policies

I—ea rning behaViOr P, Long running CPU-bound

E CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

o lewerPosssscedungpoloes
Learning behavior

Rule 3

When a job enters the system, it is placed at the highest priority
(the topmost queue).

Rule 4a

If a job uses up an entire time slice while running, its priority is
reduced (i.e., it moves down one queue).

Rule 4b

If a job gives up the CPU before the time slice is up, it stays at the
same priority level.

1D

o lewerPosssscedungpoloes
Learning behavior

Where do 10-bound/interactive jobs end up?

a) High Priority Queue b) Low Priority Queue

Ideally in high priority, but if it

finishes up the time slice then
moved to a lower priority queue

1D

Lecture 12: Process scheduling policies

I—ea rning behaViOr P, Long running CPU-bound

Schedule

E CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Lecture 12: Process scheduling policies

I—ea rning behaViOr P, Long running CPU-bound

Schedule

E CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Lecture 12: Process scheduling policies

I—ea rning behaViOr P, Long running CPU-bound

P, Computes for 1 ms and then IO for 1 ms

Schedule

E CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Lecture 12: Process scheduling policies

Learning behavior [Long running CPU-bound
P, Computes for 1 ms and then IO for 1 ms
g=10 ms P4 P,

Schedule

E CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Lecture 12: Process scheduling policies

Learning behavior [Long running CPU-bound
P, Computes for 1 ms and then IO for 1 ms
g=10 ms P4 P,
Schedule

E CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Lecture 12: Process scheduling policies

Learning behavior [Long running CPU-bound
P, Computes for 1 ms and then IO for 1 ms
q= 10 ms Pl Pz P2
Schedule

E CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Lecture 12: Process scheduling policies

Learning behavior [Long running CPU-bound
P, Computes for 1 ms and then IO for 1 ms
q= 10 ms Pl Pz P2

Schedule

E CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Lecture 12: Process scheduling policies

Learning behavior [Long running CPU-bound
P, Computes for 1 ms and then IO for 1 ms
q= 10 ms Pl Pz P2 P2

Schedule

E CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

Lecture 12: Process scheduling policies

Learning behavior [Long running CPU-bound
P, Computes for 1 ms and then IO for 1 ms
q= 10 ms Pl Pz P2 P2 Pz
g=2ms Pl Pl
Schedule

E CSE231: Operating Systems Crooks CS162 © UCB Fall 2022

o tecweizPocessscheddngpoldes
MLFQ (Naive Version): Pseudocode

foreach(queue : PrioritizedReadyQueues) { // RR
foreach(job : queue) {// RR
int timeslice = queue.getSlice();

// Execute job for timeslice associated with this queue
// If job used full timeslice then push job in
// ready queue with one lower priority level

}

1D

. lecurizPrcessscheduingpoices
Are we done?

Can MLFQ can be gamed?

Intentionally insert |10 request just before time quanta to stay
on queue.

MLFQ is subject to starvation?

Yes!

1D

. lecurizPrcessscheduingpoices
Are we done?

MLQF can be gamed: _ Rule 4
Once a job uses up its time allotment at a
Intent|0na”y |nsert IO requeSt given levels (regardless
just before time quanta to stay on of how many times gave up CPU), reduce
queue. priority
Rule 5
MLQF is subject to starvation: After some time period S, move all jobs in
system

Systematically prioritize higher-
priority queues

1D

to the topmost queue.

o lewsrPosssheaungpoldes
Today’s Class

® Process scheduling policies

o Shortest Time to Completion First

o Round Robin

o Multi-level feedback scheduling

o Linux Completely Fair Scheduler (CFS)

Acknowledgements: Lecture content derived from the CS162
course offered at University of California, Berkeley

1D

o leweizPosessscedungpoloes
Linux Completely Fair Scheduler

® Goal: Each process gets an equal share of CPU

® Attempts to divide the CPU time fairly (equally) among all
the processes

o If the latency to resume a scheduler is M units of time, N
processes will get M/N time slice of CPU

o ewerPosessshewingpolees
Linux CFS

® Constraint 1: Scheduling Latency

@ Target Latency: 20ms, 4 Processes
o Each process gets 5ms time slice

® Target Latency: 20 ms, 200 Processes

o Each process gets 0.1ms time slice
o Recall Round-Robin: Huge context switching overhead

1D

o ewerPosessshewingpolees
Linux CFS

® Constraint 2: Minimum Granularity for scheduling latency

@ Target Latency 20ms, Minimum Granularity 1ms,
100 processes

o Each process gets 1ms time slice

1D

Lecture 12: Process scheduling policies

Linux CFS

® Which process to pick from the ready queue?

® Constraint 3: Pick the process from the ready queue with
minimum vruntime (helps the 10/interactive jobs)

o Uses virtual runtime (vruntime) variable in PCB to keep track of
time a process has executed on the CPU, and it is updated at every
context switch

= vruntime +=t * weight based on process priority

E CSEZ231: Operating Systems

Linux CFS

Process

D

Burst Time

10

16
16

® Scheduling latency is 20ms, minimum
granularity is 1ms, and weight=1

®Time slice in beginning = 20/4 = 5ms

i
Inux CFS ® Scheduling latency is 20ms, minimum

Process Burst Time 9 i
granularity is 1ms, and weight=1
P, 0
@ Time slice in beginning = 20/4 = 5ms
P, 10
® Time slice after P1 terminates = 20/3 ~ 6ms
P; 16

P, 16

Linux CFS . | .
® Scheduling latency is 20ms, minimum

Process Burst Time 9 i
granularity is 1ms, and weight=1
P, 0
@ Time slice in beginning = 20/4 = 5ms
P, 4
®Time slice after P1 terminates = 20/3 ~ 6ms
P, 16
P, 16

Linux CFS . | .
® Scheduling latency is 20ms, minimum

Process Burst Time 9 i
granularity is 1ms, and weight=1
P, 0
@ Time slice in beginning = 20/4 = 5ms
P, 4
®Time slice after P1 terminates = 20/3 ~ 6ms
P, 10
P, 16

Lecture 12: Process scheduling policies

Linux CFS | | .
- . ® Scheduling latency is 20ms, minimum
rocess Burst Time _ 9]
granularity is 1ms, and weight=1

P, 0

® Time slice in beginning = 20/4 = 5ms
P, 4

® Time slice after P1 terminates = 20/3 ~ 6ms
P, 10
P, 10

IIIIH!IIIIIIIIH!III'IIIIIHIIIIIIIIHII

0 5 11 17 23

E CSEZ231: Operating Systems

Lecture 12: Process scheduling policies

Linux CFS

® Scheduling latency is 20ms, minimum

rracess B granularity is 1ms, and weight=1

i ’ ® Time slice in beginning = 20/4 = 5ms

” ’ ® Time slice after P1 terminates = 20/3 ~ 6ms
: 12 ® Time slice after P2 terminates = 20/2 = 10ms

IIIIH!IIIIIIIIH!III'IIIIIHIIIIIIIIHII

0 5 11 17 23

E CSEZ231: Operating Systems

Lecture 12: Process scheduling policies

Linux CFS

® Scheduling latency is 20ms, minimum

Process PutstTime granularity is 1ms, and weight=1

& ’ ® Time slice in beginning = 20/4 = 5ms

& ’ @ Time slice after P1 terminates = 20/3 ~ 6ms
: 100 ® Time slice after P2 terminates = 20/2 = 10ms

E CSEZ231: Operating Systems

Linux CFS

Process

: Operating Systems

Burst Time

0

11 17 23 27 37 4

Lecture 12: Process scheduling policies

® Scheduling latency is 20ms, minimum
granularity is 1ms, and weight=1

® Time slice in beginning = 20/4 = 5ms
® Time slice after P1 terminates = 20/3 ~ 6ms

® Time slice after P2 terminates = 20/2 = 10ms

7

. leuetaProcessscheduingpoides
Next Lecture

® Dynamic memory allocation

1D

