Lecture 14: Mid-Semester Review

Vivek Kumar
Computer Science and Engineering
IHIT Delhi
vivekk@iiitd.ac.in

E CSEZ231: Operating Systems

Hardware and Software

Linker takes multiple
‘.0’ file, produces a

Hardware

single executable

Assembler

Registers |

)

Input/Output

-) .
31'31‘3%%3}'525011(1)3;8933}5‘1’{3}gl‘,};b an d LI n ke r
Oldor1001010101010010100801 75
01010101001 0100183 5001010010100101

110101010011111110100001101 0101001
100110010101010100101001011010000
©ArATATANTATANTATTATANNN

110101010

Stores program code and data

Memory

8(%ebp), %eax
$1, %eax

$12, %esp

%eax

fib

$16, %esp
%eax, -16(%ebp)
8(%ebp), %eax
$2, %eax

$12, %esp

%eax

fib

$16, %esp
%eax, -12(%ebp)
-16(%ebp), %edx
-12(%ebp), %eax
%edx, %eax

Loader loads the program
image into the memory at
runtime and jumps to

main routine

Assembler produces
‘.0’ file from the
assembly code

Preprocessing

uint64_t fib(uint64_t n) {

compilation

 C—

uint64_t x = fib(n-1);
uint64_t y = fib(n-2);
return (x + y);

gcc fib.c
(Compilation phase)

Assembly

Lecture 14: Mid-semester review

Static and Dynamic Linking

® Static linking

$ gcc -static -o fib fib.c

$ file fib o Each and every library
...ELF 64-bit executable...statically linked modules refe_re_nced N the
$ 1s -1 fib relocatable file is copied into
-rwxrwxr-x 1 vivek vivek Aug 6 10:26 fib the final executable
BB (ol T = Static binding at compile
-rwxrwxr-x 1 vivek vivek 8328 Aug 6 10:27 fib time
® Dynamic linking
Sietbo Otject o Final executable only
\@ contains references
‘.?b”r:f/ oSommot (pointers) to the library
methods |~ method instead of the copy
Re.ocataue\ - of a library method
fle fib-0 Object = Binding with library done at
file . . .
GNUC/@ IRAS runtimeé during exécution
library Glibc library
methods

E CSE231: Operating Systems © Vivek Kumar 2

Lecture 14: Mid-semester review

Executable and Linkable Format (ELF)

() ELF header

o Provides a roadmap for the entire file organization
" Always at offset zero of the object file
ELF header " Provides entry point address for execution
[Two views of an ELF file
Program header table o Linkable view (relocatable file)
o Execution view (executable file, shared object)
text [Linkable view
o Section header table
" One section header for each section
rodata o Sections | | -
" Contains data required for linking
" Machine code, global variables, (initialized and un-initialized), symbol tables,
line mapping between machine code and original C code, etc.
data o Execution (or Loader) view
L o Program header table
? " One program header for each segment
Section header table o Segments
" Created by merging several sections
" Contains information required for by the loader for execution

() Contiguous chunk of memory (ELF header, PHT, SHT, each section, each
Image source: https://en.wikipedia.org/wiki/Executable _and_Linkable_Format Segment)

E CSE231: Operating Systems © Vivek Kumar 3

Lecture 14: Mid-semester review

Linker: Merges the Sections

[vivek@possum]$ cat fib.c
int get_number();

int fib(int n) {

if(n<2) return n;

else return fib(n-1)+fib(n-2);
}

int compute() {
int n = get_number();
return fib(n);

}

[vivek@possum]$ cat call-fib.c
int compute();
int get_number() {

return 40;

}
int main() {
int result = compute();
return 9;

E CSEZ231: Operating Systems

fib.o

text

.data

.bss

.rodata

.data

.bss

.rodata

P

a.out

call-fib.o

© Vivek Kumar

text

.data

.bss

.rodata

Relocation
IS the
process of
merging the
sections
and
resolving
the symbol
addresses

o ewetMgsemeseroven
Program Execution (1/3)

L3:
L4:

L5:
L6:
L7:}

L9:
L10:}

L1: int g=0;

L2: void main() {

int *a = (int*) malloc(4);
char *b = “Hello World”;
foo(a);

g="a;

L8: void foo(int* b) {

*b = 20;

“Hello World”

Bottom

Stack

Top

Heap
.data
.-rodata

text

Program Execution (2/3)

L1: int g=0;

L2: void main() {

L3: int *a = (int*) malloc(4);
L4: char *b = “Hello World”;
L5: foo(a);

L6: g="a;

L7:}

L8: void foo(int* b) {
L9: *b=20;
L10:}

Bottom

D

Heap

.data
.rodata

text

Program Execution (3/3)

L1: int g=0;

Bottom
I

N

L2: void main() {
L3: int *a = (int*) malloc(4);
L4: char *b = “Hello World”;

L5: foo(a);

L6: g="a;

L7:} Top

L8: void foo(int* b) {

L9: *b=20; Heap

L10:}
.data

.rodata

text

1D

Process

admitted

I/0O or event completion

E CSEZ231: Operating Systems

Lecture 14: Mid-semester review

States

® As a process executes,
it changes state

O
interrupt
O
O
scheduler dispatch VG 6P svart wal
(g)
O

Source: https://os-book.com/OS10/slide-dir/index.html

New: The process is
being created

Running: Instructions
are being executed

Waiting: The process
is waiting for some
event to occur

Ready: The process is
waiting to be assigned
to a processor

Terminated: The
process has finished
execution

Lecture 14: Mid-semester review

Steps for Making a System Call

Bottom Bottom Bottom Bottom
Ly by User Context Saved
Return (PC=L3) EBP Return (PC=L3) 5 Return (PC=L3) syscall(intID) {
libc opAen() g libc opgn() libc OFX"() switch(ID) {
=T 2 = < =T case 5:
X raples \/ <(\/j|; <'(/D'!
£ A 4 A vive :~$ cat /usr/include/asm/unistd_32.h &VA 0o0000a o 4 = }
BRESPM #i fndef _ASM_UNISTD_32_H . Esp | }
#define _ASM_UNISTD_32_H

__NR_restart_syscall @ O 1 1 28

__NR_exit 1

#define __NR_fork 2 |DT
#define __NR_read 3
#define __NR_write 4
#define __NR_open 5

#define __NR_close 6

User call e T8 et 3 User call User call
|___stack ine hn_umtink 10 stack ——stack —
:::::i::si:eijz-l User (ernel User Kernel

__NR_time 13

T NR_mknod 24 SpaceSpace SpaceSpace

__NR_chmod 15

E CSE231: Operating Systems © Vivek Kumar

o lecwelsiMdsemesterrevew
Process Creation & Termination

int global=0;
int main() {
if(fork() == 0) {
global++;
printf(“Child process: Global=%d\n”, global);
char* args[2] = {“./fib”, “40”};
execv(args[@], args);
printf(“I should never print\n”);
} else {
printf(“I am the Parent process\n”);
int status;
wait(&status);

}
printf(“Global=%d\n”, global);
return 0;

/ 7

1D

o cwstMdsmeere
Signal Delivery and Handling

® Process can use

Signal ted . .
e sigprocmask function to
\ make changes to its signal
T mask (member in
.text

task_struct) if it wants to
temporarily block a set of

Process Signal

e pending signals (not all signals can
be blocked, e.g., SIGKILL
e and SIGSTOP)
User can create his own

(termDir?:::,ltde:JCr':g,nstop, User’s Fhosen Sig n al h a n d Ie r fu n Cti O n
SEEE = o Except SIGKILL and SIGSTOP

1D

Ignore signal

IPC Using Pipes =
| 0

® Pipes (analogous to water pipeg_ is a unidirectional stream of data flowing
from a source process to a destination process

o Kernel buffer exposed to processes as a pair of file descriptors (readable end and
writable end). Default bufter size on latest kernel is 16 pages (16x4096 bytes)

o Data delivered in the same order as sent
o Uses blocking 10 and the writer process will block if the pipe is full

® \We use it frequently on Shell

o Better than using temporary files as pipes automatically clean up themselves unlike
files that must be explicitly removed using the “rm” command on Shell

lvivek@possum: $ cat fib.c | wc -c
1788

lvivek@possum: $ cat fib.c | wec -1
77 Pipe | Pipe |

(vivek@possum: $ cat fib.c | grep write | wc -1
10

13

E CSE231: Operating Systems © Vivek Kumar

Lecture 14: Mid-semester review

IPC Using POSIX Shared Memory

Shared memory is the fastest form of IPC in which
processes can asynchronously write to a shared
region of memory without the need for switching to
kernel space
o User specified memory size
User Space) .
® Access to the shared memory is achieved as follows
ST 1. Create and open a new shared memory object using
P1 P2 shm_open system call in the parent process
[sHm] 2. Set the desired size for the newly created shared
Kernel Space - memory region using ftruncate Y
~ 3. Map the shared memory region into the process’s
— address space using mmap (Parent rocess calls
P1 P2 1r:nrril?p that gets shared in child’s address space after
or
=Hl 4, Both child and the parent processes un-maps the
shared memory from their address space upon
U completion by using munmap system call, followed by
ser Space closing the file descriptor for the shared memory object
(close system call)
T 5. Parent deletes the shared memory object by using
shm_unlink
Kernel Space

E CSE231: Operating Systems © Vivek Kumar 14

I
Producer Consumer

sem_t jar_full;
} cookiejar_t;

cookiejar_t* cookiejar; I ro b I e m

int main() {
cookiejar = setup();

cookiejar->empty=1;

sem_init(&cookiejar->jar_empty, 1, 1); Homer Process Marge Process
sem_init(&cookiejar->jar_full, 1, @);

if(fork() == @) { homer(); } (CPU 0) empty (fuII) (CPU 1)

if(fork() == @) { marge(); }

waltgxﬂtt; Z wa%: :or :ome'" process Action Process Action Process
wai 3 wait for Marge process
sem_destroy(&cookiejar->jar_empty); State Value Value State

sem_destroy(&cookiejar->jar_full);

L0 H Forked Ready 1 0 Forked Ready

return 9;

}
7 wait(full) Blocked 0 -1 wait(empty) Running

void homer() { Blocked 0 -1 Bake Cookie-1 Running

for(int i=0; i<5; i++) {
sem_wait(&cookiejar->jar_full);

printf(“Homer ate Cookie-%d\n”, cookiejar->cookie); Ready g g post(fuII) e
&cooki - 5 . . .
} sef_post(Reoaicajarssjar_ssoty) Eat Cookie-1 Running -1 0 wait(empty) Blocked
cleanup_and_exit();
} post(empty) Running 0 0 Ready
7
wait(full) Blocked 0 -1 Bake Cookie-2 Running

void marge() {
for(int i=@; i<5; i++) { Ready 0 0 post(full) Running
sem_wait(&cookiejar->jar_empty);
printf(“Marge bake Cookie-%d\n”, ++cookiejar->cookie);
sem_post (&cookiejar->jar_full);
}

cleanup_and_exit();

}

7

1D

IPC in Distributed Memory

Process_ Process_ Process Process_
1 (rank=0) 2 (rank=1) 3 (rank=2) 4 (rank=3)

Message Passing Paired Communication

machine A machine B
task 0 task 1
network
KXl -
send(data) receive(data)
Distributed Computing

1D

int main(int argc, char **argv) {

int rank=0, nproc=4;
MPI_Init(&argc, &argv);
// 1. Get to know your world
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &nproc);
int array[SIZE]; // initialized and assume (SIZE % nproc
// 2. calculate local sum
int my_sum = @, chunk = SIZE/nproc;
for (int i=rank*chunk; i<(chunk+1)*rank; i++) my_sum += array[i];
// 3. All non-root processes send result to root processes (rank=e0)
if(rank > @) {
MPI_Send(&my_sum, 1, MPI_INT, @, ©, MPI_COMM_WORLD);
}

else { // executed only at rank=0
int total_sum = my_sum, tmp;
for(int src=1; src<nproc; src++) {
MPI_Recv(&tmp, 1, MPI_INT, src, ©, MPI_COMM WORLD, NULL);
total_sum += tmp;
}
}
MPI_Finalize();

0)

4

Process Scheduling
‘

load store
add store
read from file

wait for I/O

store increment
index
write to file

wait for I/O

load store
add store
read from file

wait for I/O

CPU burst

1/0 burst

CPU burst

1/0 burst

CPU burst

1/0 burst

Always, as it schedules
jobs in order of estimated

If jobs arrive completion time

simultaneously

Optimize
Average
Completion
Time

Doesn’t
favor
any fixed
property
Optimize
Average
Waiting Time

Prevent
Starvation

Preemptible
Prevent £

Convoy Effect

Psychic Skills
NOT Needed

3
3
v
3
Vv

Any scheduling policy that always favors a fixed
property for scheduling leads to starvation

Where are we as of now
® CSE231 Post Conditions

E CSE231: Operating Systems

1.

Students are able to create a Unix shell with
complete clarity about process creation and
process execution

Students are able to write multi- threaded
applications with

Students are able to analyze the impact of OS
concepts, e.g. virtual memory, concurrency, on
program execution and

18

- 0000]
All the best for your exam !!

® Exam syllabus
o Lectures 02-13

® Exam schedule
o Date: Thursday (6™ Oct.)
o Time: 3:00pm-4:00pm (One hour only)
o Venue: C102

® Assignment-3 will be released after the mid semester
exams (14t October)

1D

