
CSE231: Operating Systems

Lecture 14: Mid-Semester Review

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE231: Operating Systems

Lecture 14: Mid-semester review

© Vivek Kumar

Hardware and Software

1

gcc fib.c
(Compilation phase)

Loader (OS)
(Runtime phase)

Loader loads the program
image into the memory at

runtime and jumps to
main routine

Linker takes multiple
‘.o’ file, produces a
single executable

Assembler
and Linker

Assembler produces
‘.o’ file from the
assembly code

Preprocessing
and

compilation

Assembly
code

CSE231: Operating Systems

Lecture 14: Mid-semester review

© Vivek Kumar

Static and Dynamic Linking
● Static linking

o Each and every library
modules referenced in the
relocatable file is copied into
the final executable
§ Static binding at compile

time
● Dynamic linking

o Final executable only
contains references
(pointers) to the library
method instead of the copy
of a library method
§ Binding with library done at

runtime during execution

2

$ gcc –static –o fib fib.c
$ file fib
...ELF 64-bit executable...statically linked
$ ls –l fib
-rwxrwxr-x 1 vivek vivek 845304 Aug 6 10:26 fib
$ gcc –o fib fib.c
$ ls –l fib
-rwxrwxr-x 1 vivek vivek 8328 Aug 6 10:27 fib

CSE231: Operating Systems

Lecture 14: Mid-semester review

© Vivek Kumar

Executable and Linkable Format (ELF)
● ELF header

o Provides a roadmap for the entire file organization
§ Always at offset zero of the object file
§ Provides entry point address for execution

● Two views of an ELF file
o Linkable view (relocatable file)
o Execution view (executable file, shared object)

● Linkable view
o Section header table

§ One section header for each section
o Sections

§ Contains data required for linking
§ Machine code, global variables, (initialized and un-initialized), symbol tables,

line mapping between machine code and original C code, etc.

● Execution (or Loader) view
o Program header table

§ One program header for each segment
o Segments

§ Created by merging several sections
§ Contains information required for by the loader for execution

● Contiguous chunk of memory (ELF header, PHT, SHT, each section, each
segment)

3

Image source: https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

CSE231: Operating Systems

Lecture 14: Mid-semester review

© Vivek Kumar

Linker: Merges the Sections

4

.text

.data

.bss

.rodata

.text

.data

.bss

.rodata

.text

.data

.bss

.rodata

fib.o

call-fib.o a.out

● Relocation
is the
process of
merging the
sections
and
resolving
the symbol
addresses

CSE231: Operating Systems

Lecture 14: Mid-semester review

© Vivek Kumar

Program Execution (1/3)

6

L1: int g=0;

L2: void main() {
L3: int *a = (int*) malloc(4);
L4: char *b = “Hello World”;
L5: foo(a);
L6: g=*a;
L7: }

L8: void foo(int* b) {
L9: *b = 20;
L10:}

.rodata

.data

Heap

.text

g

“Hello World”

a

Top

Bottom

Stack

CSE231: Operating Systems

Lecture 14: Mid-semester review

© Vivek Kumar

Program Execution (2/3)

7

L1: int g=0;

L2: void main() {
L3: int *a = (int*) malloc(4);
L4: char *b = “Hello World”;
L5: foo(a);
L6: g=*a;
L7: }

L8: void foo(int* b) {
L9: *b = 20;
L10:}

.rodata

.data

Heap

Top

Bottom

.text

g

“Hello World”

a

Old EBP (=149)145

Old EBP (….)149
int *a148

char *b147

int *b145
EBP

ESP

Return (PC=L6)146Stack

CSE231: Operating Systems

Lecture 14: Mid-semester review

© Vivek Kumar

Program Execution (3/3)

8

L1: int g=0;

L2: void main() {
L3: int *a = (int*) malloc(4);
L4: char *b = “Hello World”;
L5: foo(a);
L6: g=*a;
L7: }

L8: void foo(int* b) {
L9: *b = 20;
L10:}

.rodata

.data

Heap

Top

Bottom

.text

g

“Hello World”

a

Old EBP (….)
int *a

char *b

149
148

147

EBP

ESP
Stack

CSE231: Operating Systems

Lecture 14: Mid-semester review

© Vivek Kumar

Process States

9 Source: https://os-book.com/OS10/slide-dir/index.html

● As a process executes,
it changes state
o New: The process is

being created
o Running: Instructions

are being executed
o Waiting: The process

is waiting for some
event to occur

o Ready: The process is
waiting to be assigned
to a processor

o Terminated: The
process has finished
execution

CSE231: Operating Systems

Lecture 14: Mid-semester review

© Vivek Kumar

Steps for Making a System Call

10

CSE231: Operating Systems

Lecture 14: Mid-semester review

© Vivek Kumar

Process Creation & Termination

11

int global=0;
int main() {
 if(fork() == 0) {
 global++;
 printf(“Child process: Global=%d\n”, global);
 char* args[2] = {“./fib”, “40”};
 execv(args[0], args);
 printf(“I should never print\n”);
 } else {
 printf(“I am the Parent process\n”);
 int status;
 wait(&status);
 }
 printf(“Global=%d\n”, global);
 return 0;
}

CSE231: Operating Systems

Lecture 14: Mid-semester review

© Vivek Kumar

Signal Delivery and Handling
● Process can use

sigprocmask function to
make changes to its signal
mask (member in
task_struct) if it wants to
temporarily block a set of
signals (not all signals can
be blocked, e.g., SIGKILL
and SIGSTOP)

● User can create his own
signal handler function
o Except SIGKILL and SIGSTOP

12

Signal generated

Signal received
by the process

Process
mask?

Signal
pending

Ignore signal

Default action
(terminate, dump, stop,

ignore, and continue)
User’s chosen

action

CSE231: Operating Systems

Lecture 14: Mid-semester review

© Vivek Kumar

IPC Using Pipes

● Pipes (analogous to water pipe) is a unidirectional stream of data flowing
from a source process to a destination process
o Kernel buffer exposed to processes as a pair of file descriptors (readable end and

writable end). Default buffer size on latest kernel is 16 pages (16x4096 bytes)
o Data delivered in the same order as sent
o Uses blocking IO and the writer process will block if the pipe is full

● We use it frequently on Shell
o Better than using temporary files as pipes automatically clean up themselves unlike

files that must be explicitly removed using the “rm” command on Shell

13

Process-1 Process-2Pipe

Processes must be running
on the SAME machine

cat fib.c grep
writePipe wc -lPipe

CSE231: Operating Systems

Lecture 14: Mid-semester review

© Vivek Kumar

IPC Using POSIX Shared Memory
● Shared memory is the fastest form of IPC in which

processes can asynchronously write to a shared
region of memory without the need for switching to
kernel space
o User specified memory size

● Access to the shared memory is achieved as follows
1. Create and open a new shared memory object using

shm_open system call in the parent process
2. Set the desired size for the newly created shared

memory region using ftruncate
3. Map the shared memory region into the process’s

address space using mmap (parent process calls
mmap that gets shared in child’s address space after
fork)

4. Both child and the parent processes un-maps the
shared memory from their address space upon
completion by using munmap system call, followed by
closing the file descriptor for the shared memory object
(close system call)

5. Parent deletes the shared memory object by using
shm_unlink

14

Kernel Space

User Space

P1 P2

SHM

User Space

Kernel Space

P1 P2

SHM

SHM SHM

P1 P2
SHM

CSE231: Operating Systems

Lecture 14: Mid-semester review

© Vivek Kumar

Producer Consumer
Problem

15

Homer Process
(CPU 0)

Sem
(empty)

Sem
(full)

Marge Process
(CPU 1)

Action Process
State

Sem
Value

Sem
Value

Action Process
State

Forked Ready 1 0 Forked Ready

wait(full) Blocked 0 -1 wait(empty) Running

Blocked 0 -1 Bake Cookie-1 Running

Ready 0 0 post(full) Running

Eat Cookie-1 Running -1 0 wait(empty) Blocked

post(empty) Running 0 0 Ready

wait(full) Blocked 0 -1 Bake Cookie-2 Running

Ready 0 0 post(full) Running

……. …….

CSE231: Operating Systems

Lecture 14: Mid-semester review

© Vivek Kumar

IPC in Distributed Memory

16

CSE231: Operating Systems

Lecture 14: Mid-semester review

© Vivek Kumar

Process Scheduling

17

CPU burst
load store
add store
read from file

store increment
index
write to file

load store
add store
read from file

wait for I/O

wait for I/O

wait for I/O

I/O burst

I/O burst

I/O burst

CPU burst

CPU burst

•
•
•

•
•
•

Property FCFS SJF STCF RR

Optimize
Average

Completion
Time

Optimize
Average

Waiting Time

Prevent
Starvation

Prevent
Convoy Effect

Psychic Skills
NOT Needed

Preemptible

Any scheduling policy that always favors a fixed
property for scheduling leads to starvation

If jobs arrive
simultaneously

Always, as it schedules
jobs in order of estimated

completion time

Doesn’t
favor

any fixed
property

CSE231: Operating Systems

Where are we as of now
● CSE231 Post Conditions

1. Students are able to create a Unix shell with
complete clarity about process creation and
process execution

2. Students are able to write multi- threaded
applications with synchronization primitives and
ability to analyze effects of concurrency on
process execution and correctness

3. Students are able to analyze the impact of OS
concepts, e.g. virtual memory, concurrency, on
program execution and ability to fine-tune the
program to run efficiently on a given OS

4. Students are able to demonstrate deeper
understanding of the Unix-like OSes and kernel
programming

18

CSE231: Operating Systems

All the best for your exam !!
● Exam syllabus

o Lectures 02-13
● Exam schedule

o Date: Thursday (6th Oct.)
o Time: 3:00pm-4:00pm (One hour only)
o Venue: C102

● Assignment-3 will be released after the mid semester
exams (14th October)

