
CSE231: Operating Systems

Lecture 15: Virtual Memory

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Today’s Class
● Introduction to virtual memory
● Mapping virtual to physical memory
● Dynamic relocation using base/bound registers
● Short discussion on mid semester feedback

2

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Virtual Memory
● Programs refer to memory using virtual

memory addresses
o int* ptr = malloc(4);
o Conceptually very large array of bytes
o Each byte has its own address
o Operating system provides address space

private to particular “process”
● Compiler and run-time system allocate VM

o Where different program objects should be
stored

o All allocation within single virtual address
space

3

00······0

FF······F

Source: COMP321, Alan L. Cox, Rice University

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Problem 1: How Does Everything Fit?

4

64-bit addresses:
16 Exabyte (16 billion GB!) Physical main memory:

Tens or Hundreds of Gigabytes

?

And there are many processes ….

Source: COMP321, Alan L. Cox, Rice University

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Problem 2: Memory Management

5

Physical main memory

What goes where?
There are several

processes, but physical
memory is limited

stack
heap

.text

.data
…

Process 1
Process 2
Process 3

…
Process n

x

Source: COMP321, Alan L. Cox, Rice University

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Problem 3: How To Protect?

6

Physical main memory

Process i

Process j

Source: COMP321, Alan L. Cox, Rice University

● How to prevent Process-1 accessing the memory owned
by Process-2 (unless shared)?

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Problem 4: How To Share?

7

Physical main memory
Process i

Process j

Source: COMP321, Alan L. Cox, Rice University

● How to share memory between two processes?

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Solution: Indirection

8

Physical memory

Virtual memory

Virtual memory

Process 1

Process n

Some
mapping
algorithm

● Using some mapping technique
can solves all the previous
problems

● Each process gets its own
private memory space

Source: COMP321, Alan L. Cox, Rice University

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Address Spaces
● Using some mapping technique to translate the address seen by

the user to the actual address on the RAM gives two different
views of addresses
o Virtual address space (as seen by the process)
o Physical address space (as seen by the OS depending on DRAM size)

● Virtual address space: Set of N = 2n virtual addresses
 {0, 1, 2, 3, …, N-1}

● Physical address space: Set of M = 2m physical addresses
 {0, 1, 2, 3, …, M-1}

9 Source: COMP321, Alan L. Cox, Rice University

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

● Efficient use of limited main memory (RAM)
o Use RAM as a cache for parts of a virtual address space

§ Some non-cached parts stored on disk
o Keep only active areas of virtual address space in RAM

§ Transfer data back and forth to disk as needed

● Simplifies memory management for programmers
o Each process gets a full private address space

● Isolates address spaces
o One process can’t interfere with another’s memory

§ Because they operate in different address spaces

10 Source: COMP321, Alan L. Cox, Rice University

Virtual Memory (VM)

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Today’s Class
● Introduction to virtual memory
● Mapping virtual to physical memory
● Dynamic relocation using base/bound registers
● Short discussion on mid semester feedback

11

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Mapping Virtual to Physical Address
● Approaches

1. Virtual address is same as the physical address

12

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

A System Using Physical Addressing
● Used in “simple”

systems like
embedded
microcontrollers in
devices like cars,
elevators, and
digital picture
frames
o Lowers production

cost of the
hardware (limited
support of MMU)

13

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Memory Access

8: ...

Source: COMP321, Alan L. Cox, Rice University

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Mapping Virtual to Physical Address
● Approaches

1. Virtual address is same as the physical address
2. Virtual address is not the same as physical address

14

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

A System Using Virtual Addressing
● Used in all modern

servers, desktops,
laptops, tablets, and
cell phones
o Why we cannot have

VA same as PA in
this case?

15

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical
address

(PA)

Memory Access

8: ...

CPU

Virtual
address

(VA)

CPU Chip

Source: COMP321, Alan L. Cox, Rice University

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

A System Using Virtual Addressing
● Can two processes have

same virtual addresses?
$./fib &
$./fib &
$./fib &
$./fib &
$./fib &
$./fib &

16

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

A System Using MMU Table
● Can two processes

have same virtual
addresses?
o Yes, as long as the

VA-PA mapping is
different for both
processes, and they
are reflected in the
MMU table during
scheduling

17

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical
address

(PA)

Memory Access

8: ...

Core-0

Virtual
address

(VA)

CPU Chip

MMU

Physical
address

(PA)
Core-1

Virtual
address

(VA)

0 9

1 5

2 20

3 50

0 8

1 4

2 19

3 49

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

A System Using MMU Table
● Can two processes

have same virtual
addresses?
o Yes, as long as the

VA-PA mapping is
different for both
processes, and they
are reflected in the
MMU table during
scheduling

● How to support?
o Save/restore the

MMU table during
context switching of
the processes at
each core

18

void scheduler() {
 while(true) {
 lock(process_table);
 foreach(Process p: scheduling_algorithm(process_table)) {
 if(p->state != READY) {
 continue;
 }
 p->state = RUNNING;
 unlock(process_table);
 swtch_mmu_table(scheduler_process, p);
 swtch(scheduler_process, p);
 // p is done for now..
 lock(process_table);
 }
 unlock(process_table);
 }
}

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Issues with MMU Table Based Approach
● A process is not just going to have a few virtual addresses

o It would be accessing several virtual addresses throughout its
execution

● Not possible to store the entire VA-PA mapping inside per-
process MMU table
o Huge overhead in the operating system

● How about assigning a contiguous chunk of physical
memory to each process?
o Any issues you can foresee?
o Nonetheless, let us see how to support it

19

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Today’s Class
● Introduction to virtual memory
● Mapping virtual to physical memory
● Dynamic relocation using base/bound registers
● Short discussion on mid semester feedback

20

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Dynamic Relocation
● “Relocation” means fixing an “indirection”
● Recall the ”relocation” from the linker/loader lecture

o In case of linker/loader, the linker created an “indirection” by just
providing the pointers to the machine code inside the shared
libraries

o Loader used dynamic relocation during execution time by patching
the pointers to the exact location of the machine code (e.g., printf’s
actual implementation in glibc)

● Similar approach of dynamic relocation can be used by the
OS to decide the physical memory mapping for each
processes

21

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Mapping Virtual to Physical Address
● Approaches

1. Virtual address is same as the physical address
2. Virtual address is not the same as physical address

a) Using base & bound registers for VA to PA mapping

22

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Approach-1: Using Base/Bound Registers
● Assume, during “exec”,

the loader somehow
knows the exact memory
requirement of the
process (e.g., N bytes)

● OS will allocate a
contiguous chunk of
physical memory (a.k.a.
segment) of N bytes for
this process starting at
some address. E.g.,
1024

● MMU will now have a
pair of registers called as
base (=1024) and bound
(=N bytes)

23

Memory Access

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical
address

(PA)

8: ...

CPU

Virtual
address

(VA)

CPU Chip

Base Bound

1024 N

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Example: Base and Bound
● Each process will have a

unique base value, but bound
(limit) may be same for some
processes (e.g., launching
several fib executable)

● During execution, the value of
base and bound can be loaded
into respective registers to
help in address translation
from VA to PA

● Example for an address
translation: A process with 4KB
address space placed at index
16KB in physical memory

24

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical
address

(PA)

8: ...

CPU

Virtual
address

(VA)

CPU Chip

Base Bound

16KB 4KB

Memory Access

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

A System Using Base/Bound Registers

25

void scheduler() {
 while(true) {
 lock(process_table);
 foreach(Process p: scheduling_algorithm(process_table))
{
 if(p->state != READY) {
 continue;
 }
 p->state = RUNNING;
 unlock(process_table);
 swtch_mmu_bbRegisters(scheduler_process, p);
 swtch(scheduler_process, p);
 // p is done for now..
 lock(process_table);
 }
 unlock(process_table);
 }
}

● swtch_mmu_bbRegisters
(p1, p2)
o Simply save the content

of base/bound registers
of currently executing P1
process into its PCB, and
load the base/bound
registers from P2’s PCB

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Reusing Same Physical Addresses
● Let us consider a situation

where only one process P1
is running on a single-core
processor and requires a
huge address space that
took away a major chunk of
DRAM

● How to run another process
P2 on this processor as it
requires huge amount of
address space?
o Solution: Both could have

overlapping physical
address space

o Swap out the physical
address space of the
running process to the disk
during context switch

o Huge overhead, but doable!
26

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical
address

(PA)

8: ...

CPU

Virtual
address

(VA)

CPU Chip

Base Bound

16KB 10GB

Disk

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Fragmentation with Base/Bound (1/2)
● Large gap in address space

between stack and heap
● Range of memory is unused, but

still allocated to process
● Our approach-1 will lead to

fragmentation
o Internal or external fragmentation in

this case?

27

Heap

Stack

0

4GB

.data

.text

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Fragmentation with Base/Bound (2/2)
● There would also be

situation that no
contiguous free
space is left for the
address space of a
new process
o What type of

fragmentation is
this?

● Any other issues?
o Can we create

shared memory
between processes?

28

Process-4

Process-1

Process-2

Process-3

OS

Process-2

Process-3

OS

Process-2

Process-3

OS

Process-5

No space
remaining for

placing Process-5

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Base/Bound: Summary
● Simple approach

o Finding space for a new process’s address space in memory
o OS must save and restore the base-and-bounds pair at context

switches
o OS must provide exception handlers to be invoked if a process tries to

access memory outside its bounds
o OS will be able to move an address space of a stopped process from

one location in memory to another
o Reclaiming all of its memory at process termination

● Impractical to implement
o Mandates OS to allocate contiguous chunk of physical address space

to each process

29

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Reference Material
● You can read chapter 15 of OSTEP book (Address

Translation)

35

CSE231: Operating Systems

Lecture 15: Virtual Memory

© Vivek Kumar

Next Lecture
● Segmentation
● Quiz-3 on 24th October

o Syllabus: lectures 13, 15-17

36

