Lecture 15: Virtual Memory

Vivek Kumar
Computer Science and Engineering
IHIT Delhi
vivekk@iiitd.ac.in

o awesvmaeney
Today’s Class

® Introduction to virtual memory

® Mapping virtual to physical memory
® Dynamic relocation using base/bound registers
® Short discussion on mid semester feedback

1D

Lecture 15: Virtual Memory

Virtual Memory

00--+++:0 ® Programs refer to memory using virtual
memory addresses

O 1nt* ptr = malloc(4);

o Conceptually very large array of bytes
o [Each byte has its own address
O

Operating system provides address space
private to particular “process”

® Compiler and run-time system allocate VM
o Where different program objects should be
stored

o All allocation within single virtual address
space

E CSEZ231: Operating Systems Source: COMP321, Alan L. Cox, Rice University 3

Problem 1: How Does Everything Fit?
64-bit addresses:

16 Exabyte (16 billion GB!) Physical main memory:
Tens or Hundreds of Gigabytes

And there are many processes

1D

o ewetsvmeweny
Problem 2: Memory Management

Physical main memory

Process 1 stack
Process 2 heap
Process 3 X text

e .data
Process n

1D

Problem 3: How To Protect?

Physical main memory
o >
Process |
® How to prevent Process-1 accessing the memory owned
by Process-2 (unless shared)?

1D

o bcwelsVimaMemoy
Problem 4: How To Share?

Physical main memory

Process i

rocese >—

® How to share memory between two processes?

1D

® Using some mapping technique

SOlution: Indirection can solves all the previous

problems

® Each process gets its own
private memory space

Virtual memory

Process 1

Physical memory

)

Virtual memory

Process n

1D

Lecture 15: Virtual Memory

Address Spaces

® Using some mapping technique to translate the address seen by
the user to the actual address on the RAM gives two different

views of addresses
o Virtual address space (as seen by the process)
o Physical address space (as seen by the OS depending on DRAM size)

® \irtual address space: Set of N = 2" virtual addresses
{0,1, 2,3, ..., N-1}

® Physical address space: Set of M = 2™ physical addresses
{0,1,2,3, ..., M-1}

[E CSEZ231: Operating Systems Source: COMP321, Alan L. Cox, Rice University

Lecture 15: Virtual Memory

Virtual Memory (VM)

® Efficient use of limited main memory (RAM)

o Use RAM as a cache for parts of a virtual address space
= Some non-cached parts stored on disk
o Keep only active areas of virtual address space in RAM

» Transfer data back and forth to disk as needed
® Simplifies memory management for programmers
o Each process gets a full private address space

® Isolates address spaces
o One process can't interfere with another’s memory
= Because they operate in different address spaces

E CSEZ231: Operating Systems Source: COMP321, Alan L. Cox, Rice University

10

o awesvmaeney
Today’s Class

® Introduction to virtual memory

® Mapping virtual to physical memory

® Dynamic relocation using base/bound registers
® Short discussion on mid semester feedback

1D

o wetsvmeMensy
Mapping Virtual to Physical Address

® Approaches
1. Virtual address is same as the physical address

1D

Lecture 15: Virtual Memory

A System Using Physical Addressing

Main memory

®

0:
1:
_ 2:
Physical address 3.

(PA) : w
CPU > 4.
5.

A | .
6:

7:)
8:
M-1:

E CSEZ231: Operating Systems

Memory Access

Source: COMP321, Alan L. Cox, Rice University

Used in “simple”
systems like
embedded
microcontrollers in
devices like cars,
elevators, and
digital picture

frames
o Lowers production
cost of the

hardware (limited
support of MMU)

13

o wetsvmeMensy
Mapping Virtual to Physical Address

® Approaches

1. Virtual address is same as the physical address
2. Virtual address is not the same as physical address

1D

Lecture 15: Virtual Memory

A System Using Virtual Addressing

Main memory

CPU Chip
Virtual
address
(VA)
CPU
A

MMU

Physical
address

(PA)
>

ONUREWNRO

E CSEZ231: Operating Systems

Memory Access

Source: COMP321, Alan L. Cox, Rice University

Used in all modern
servers, desktops,
laptops, tablets, and
cell phones

o Why we cannot have
VA same as PA In
this case?

15

Lecture 15: Virtual Memory

A System Using Virtual Addressing

[vivek@possum: $ readelf -a ./fib

ELF Header:

® Can two processes have

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

Class:

DERS:
Version:
0OS/ABI:

ABI Version:
Type:
Machine:
Version:

Entry point address:
Start of program headers:
Start of section headers:

Flags:

Size of this header:

Size of program headers:
Number of program headers:
Size of section headers:
Number of section headers:

Section header string table index:

E CSEZ231: Operating Systems

ELF64

2's complement, little
1 (current)

UNIX — System V

(%)

DYN (Position-Independe
Advanced Micro Devices
ox1

0x1080

64 (bytes into file)
14056 (bytes into file)
0x0

64 (bytes)

56 (bytes)

13

64 (bytes)

31

30

© Vivek Kumar

same virtual addresses?

$./fib &
$./fib &
$./fib &
$./fib &
$./fib &
$./fib &

16

Lecture 15: Virtual Memory

A System Using MMU Table

CPU Chip
Virtual 1, Physical
address address
(VA) i (PA)
Core-0 2 | 20 —>
3 50
MMU
Virtual Physical
address S address
(VA) tp (PA)
Core-1 2 19 —
3 49
MMU
M

ONUREWNRO

-1:

Main memory

E CSEZ231: Operating Systems

Memory Access

© Vivek Kumar

® Can two processes
have same virtual
addresses?

o Yes, as long as the
VA-PA mapping is
different for both
processes, and they
are reflected in the

MMU table during
scheduling

17

A System Using MMU Table

void scheduler() {
while(true) {
lock(process_table);

if(p->state != READY) {

continue;
}
p->state = RUNNING;
unlock(process_table);
swtch_mmu_table(scheduler_process, p);
swtch(scheduler_process, p);
// p is done for now..
lock(process_table);

}

unlock(process_table);

foreach(Process p: scheduling_algorithm(process_table)) {

7

1D

® Can two processes
have same virtual
addresses?

O

Yes, as long as the
VA-PA mapping is
different for bo
processes, and they
are reflected in the
MMU table during

scheduling

® How to support?

O

Save/restore the
MMU table during
context swﬂchmg of
the processes a
each core

Lecture 15: Virtual Memory

Issues with MMU Table Based Approach

® A process is not just going to have a few virtual addresses
o It would be accessing several virtual addresses throughout its
execution

® Not possible to store the entire VA-PA mapping inside per-
process MMU table

o Huge overhead in the operating system

® How about assigning a contiguous chunk of physical
memory to each process?

o Any issues you can foresee?
o Nonetheless, let us see how to support it

E CSE231: Operating Systems © Vivek Kumar 19

o awesvmaeney
Today’s Class

® Introduction to virtual memory

® Mapping virtual to physical memory

® Dynamic relocation using base/bound registers
® Short discussion on mid semester feedback

1D

Lecture 15: Virtual Memory

Dynamic Relocation

® “Relocation” means fixing an “indirection”

® Recall the "relocation” from the linker/loader lecture

o In case of linker/loader, the linker created an “indirection” by just
providing the pointers to the machine code inside the shared
libraries

o Loader used dynamic relocation during execution time by patching
the pointers to the exact location of the machine code (e.g., printf's

actual implementation in glibc)

® Similar approach of dynamic relocation can be used by the
OS to decide the physical memory mapping for each
processes

E CSE231: Operating Systems © Vivek Kumar 21

o wetsvmeMensy
Mapping Virtual to Physical Address

® Approaches

1. Virtual address is same as the physical address

2. Virtual address is not the same as physical address
a) Using base & bound registers for VA to PA mapping

1D

Lecture 15: Virtual Memory

Approach-1: Using Base/Bound Registers

Main memory

1024 N

CPU Chip
Virtual
address
(VA)
CPU
A

MMU

Physical
address

(PA)
>

ONMUREWLNRERO

E CSEZ231: Operating Systems

Memory Access

© Vivek Kumar

® Assume, during “exec’,

the loader somehow
knows the exact memory
requirement of the
process (e.g., N bytes)

OS will allocate a
contiguous chunk of
physical memory &a.k.a.
segment) of N bytes for
this process starfing at

some address. E.qg.,
1024

MMU will now have a
Balr of registers called as

ase (=1024) and bound
(=N bytes)

23

Lecture 15: Virtual Memory

Example: Base and Bound

Main memory

0:
CPU Chip 1:
Virtual Physical 7.
address address 3:

(VA) Base Bound (PA) . \
CPU 16KB 4B |fee—> 4:
= 5:
MMU 6:

7:)
8:
M-1

® Each process will have a

unique base value, but bound
(limit) may be same for some
processes (e.g., launching
several fib executable)

During execution, the value of
base and bound can be loaded
Into respective registers to
help in address translation
from VA to PA

Example for an address
translation: A process with 4KB
address space placed at index
16KB in physical memory

E CSEZ231: Operating Systems

Memory Access

© Vivek Kumar

Virtual Address Physical Address
0 - 16 KB

1KB — 17 KB

3000 — 19384

4400 — Fault (out of bounds)

24

Lecture 15: Virtual Memory

A System Using Base/Bound Registers

void scheduler() {

while(true) { ® swich _mmu_bbRegisters

lock(process_table);
foreach(Process p: scheduling algorithm(process table))

if(p->state != READY) {
continue;
}
p->state = RUNNING;
unlock(process_table);
swtch_mmu_bbRegisters(scheduler_process, p);
swtch(scheduler_process, p);
// p 1s done for now..
lock(process_table);

}

unlock(process_table);

} 7

E CSE231: Operating Systems © Vivek Kumar

(p1, p2)

o Simply save the content
of base/bound registers
of currently executing P1
process into its PCB, and
load the base/bound
registers from P2’s PCB

25

Lecture 15: Virtual Memory

Reusing Same Physical Addresses

Main memory

Base

Bound

16KB

10GB

CPU Chip
Virtual
address
(VA)
CPU
A

MMU

Physical
address

(PA)
>

ONMUREWLNRERO

E CSEZ231: Operating Systems

© Vivek Kumar

® Let us consider a situation

where only one process P1
IS running on a single-core
rocessor and requires a
ugi(e address space that
took away a major chunk of
DRAM

How to run another process
P2 on this processor as it
requires huge amount of
address space?

o Solution: Both could have

overlapping physical
address space

o Swap out the physical
address space of the

running process to the disk
during context switch

o Huge overhead, but doable!
26

4GB

Stack

Heap

.data

text

0

E CSEZ231: Operating Systems

Lecture 15: Virtual Memory

Fragmentation with Base/Bound (1/2)

_arge gap in address space
petween stack and heap

Range of memory is unused, but
still allocated to process

Our approach-1 will lead to
fragmentation

o Internal or external fragmentation in
this case?

© Vivek Kumar

27

Fragmentation with Base/Bound (2/2)

Process-4

Process-3

Process-2

OS

1D

Process-3

Process-2

Process-3

Process-2

OS

0OS

No space
remaining for
placing Process-5

® There would also be
situation that no
contiguous free
space is left for the
address space of a
NEew pProcess
o What type of

fragmentation is
this?

® Any other issues?

o Can we create
shared memory
between processes?

Lecture 15: Virtual Memory

Base/Bound: Summary

® Simple approach
o Finding space for a new process’s address space in memory

o OS must save and restore the base-and-bounds pair at context
switches

o OS must provide exception handlers to be invoked if a process tries to
access memory outside its bounds

o OS will be able to move an address space of a stopped process from
one location in memory to another

o Reclaiming all of its memory at process termination

® |mpractical to implement

o Mandates OS to allocate contiguous chunk of physical address space
to each process

E CSE231: Operating Systems © Vivek Kumar 29

o teewretSVimalMemoy
Reference Material

® You can read chapter 15 of OSTEP book (Address
Translation)

1D

o ewetsviwaMemy
Next Lecture

® Segmentation

® Quiz-3 on 24" October
o Syllabus: lectures 13, 15-17

1D

