
CSE231: Operating Systems

Lecture 16: Segmentation

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE231: Operating Systems

Lecture 16: Segmentation

© Vivek Kumar

Last Lecture
● We need some

kind of mapper
between VM-PM
as VM (virtual
memory) too big
than available PM
(physical
memory)
o One-to-one

mapping
o Using MMU

table
o Dynamic

relocation using
base/bound
registers
§ Prone to

fragmentation

1

CSE231: Operating Systems

Lecture 16: Segmentation

© Vivek Kumar

Today’s Class
● Segmentation
● Segment registers
● Global Descriptor Table (GDT)

2

CSE231: Operating Systems

Lecture 16: Segmentation

© Vivek Kumar

Loader View
● PHDR index 3

o Starting virtual address is 4096 and
total size 632

● PHDR index 4
o Starting virtual address is 8192 and

total size 308
● PHDR index 5

o Starting virtual address is 16084
● Non-contiguous memory layout

across segments (inter-segment)
● Contiguous memory within

segments (intra-segment)
3

CSE231: Operating Systems

Lecture 16: Segmentation

© Vivek Kumar

ELF Segment Allocations
● Exact size for stack and heap size

cannot be known upfront
o Hello world program

§ Minimal sized stack and heap
o Recursive Fibonacci program

§ Large stack but minimal sized heap
o Recursive merge sort program

§ Large stack and large heap

● Observations
o Each segment (stack, heap, data and text)

has different memory requirements

4

0

4GB

Heap

Stack

.data

.text

CSE231: Operating Systems

Lecture 16: Segmentation

© Vivek Kumar

Mapping Virtual to Physical Address
● Approaches

1. Virtual address is same as the physical address
2. Virtual address is not the same as physical address

a) Using base & bound for VA to PA mapping
b) Using segmentation for VA to PA mapping

5

CSE231: Operating Systems

Lecture 16: Segmentation

© Vivek Kumar

Approach-2: Segment Wise Base/Bound

6

Heap

Stack

.data

.text
2000

1000

3000

5000
6000

9000

OffsetSegment
Selector

● Each segment can have its own (“personal”) base and bound
values
o Segmentation

● Each virtual address can have few bits to specify the segment
they belong (e.g., 2 bits to specify 4 different segments), and
remaining bits to specify the offset into that segment

● Example: How to access virtual address 250 (binary: 11111010)?
1. Find the segment from the segment selector (e.g., data for first two bits)
2. Find the offset (111010) = 58
3. Find the base for this segment (Base=2000)
4. Check if offset within bounds (Bound=1000)
5. Physical address = 2058

CSE231: Operating Systems

Lecture 16: Segmentation

© Vivek Kumar

Non-Contiguous Inter-Segment Memory
● As the base and bound is separate for each segment,

now it is not a requirement to have a contiguous chunk
of physical address space for the process’s address
space
o Better space management and reduction in fragmentation

● Example: How to access virtual address 250 (binary:
11111010)?
1. Find the segment from the segment selector (e.g., data for

first two bits)
2. Find the offset (111010) = 58
3. Find the base for this segment (Base=900)
4. Check if offset within bounds (Bound=1000)
5. Physical address = 958

7

Heap

Stack

.data

.text

1900

900

3000

7000
8000

10000

2000

4000

CSE231: Operating Systems

Lecture 16: Segmentation

© Vivek Kumar

Accessing Segment’s Base/Bound
● How to access base and bounds of individual

segments?
● Can we store the segments and their base/bound

values in a MMU table?
o Yes, but it would require iterating through the MMU

table entries [O(n)]
o Any simple technique?

§ Hardware support by providing dedicated registers on
each core

8

Heap

Stack

.data

.text

1900

900

3000

7000
8000

10000

2000

4000

CSE231: Operating Systems

Lecture 16: Segmentation

© Vivek Kumar

Hardware Support for Segmentation
● x86 platform supports six segment registers per CPU

o CS (Code Segment)
o SS (Stack Segment)
o DS (Data Segment)
o ES, FG, and GS

§ General purpose

● Reduced address translation time as single CPU cycle required
to access registers

● A program could have thousands of segments, but at any given
time it can only use a maximum of 6 segment registers on x86

9

CSE231: Operating Systems

Lecture 16: Segmentation

© Vivek Kumar

Segment Registers
● MMU table can now

have entries for
each segment
registers and their
corresponding base
and bound values

● Hardware provides
special support for
“MMU table”

10

Main memory

MMU Table

Physical
address

(PA)

...
CPU

Virtual Address
(VA)

CPU Chip

Seg Base Bound

CS 2000 1000

SS 4000 3000

DS 900 1000

Stack

.data

.text

900

1900
2000

3000

4000

7000

CSE231: Operating Systems

Lecture 16: Segmentation

© Vivek Kumar

Global Descriptor Table (GDT)

● Similar to IDT, there is also a GDT stored in memory (DRAM)
● Usually one GDT per processor
● Each CPU has a dedicated register (GDTR) that holds the starting address of this GDT
● Each entries in GDT has a base-bound pair, privilege mode for this physical memory segment

(kernel vs user space), memory access type (read/write/executable), etc.
● Still, too many operations for each virtual memory accesses

1. Load segment selector from the virtual address
2. Load GDT offset by looking into segment register
3. Load GDTR and add the above offset to get index
4. Load base and bound values stored at that index

● How to directly access segment’s base/bound?
o Add more hardware support!

11

GDTR

Note: There is also another table Local
Descriptor Table (LDT) in x86, which is
per-process unlike the GDT. GDT can

store base/bound for the LDTs

CSE231: Operating Systems

Lecture 16: Segmentation

© Vivek Kumar

Caching of Base/Bound Per Register

● Each segment register has a visible and a hidden part
o Visible part is programable and it is an index into the GDT for that

particular segment register
o The hidden part is non-programable and it stores the base, bound

(a.k.a limit) and access information for each segment register (cache)
§ It is cached automatically the first time a GDT index is accessed
§ No need to access GDT until a context switch is done (Why?)
§ No extra CPU cycles wasted for accessing GDT in VA to PA translation

12

GDT index

CSE231: Operating Systems

Lecture 16: Segmentation

© Vivek Kumar

A System Using Segmentation
● Index into the GDT

for all the segment
registers are
reloaded during
context switch

● It also automatically
updates the values
stored inside the
hidden part of each
segment register
(see previous slide)

13

void scheduler() {
 while(true) {
 lock(process_table);
 foreach(Process p: scheduling_algorithm(process_table)) {
 if(p->state != READY) {
 continue;
 }
 p->state = RUNNING;
 unlock(process_table);
 swtch_segment_registers(scheduler_process, p);
 swtch(scheduler_process, p);
 // p is done for now..
 lock(process_table);
 }
 unlock(process_table);
 }
}

CSE231: Operating Systems

Lecture 16: Segmentation

© Vivek Kumar

Points to Ponder
● Can user process update GDTR to point to a new GDT?

o No, it can only be done at the boot time by the OS running in privileged mode
● As GDT is stored in memory, can some rouge process can easily change

the values stored inside the GDT?
o No, GDT is stored in physical memory location that is accessible only to the OS
o Updates to GDT entries are only carried out by OS in privileged mode (e.g.,

allocating process address space during exec)
● As GDT is stored in memory, can some rouge process access memory

segments related to the OS code?
o No, recall that each entry inside the GDT also has a privilege information stored
o OS specific memory is stored in the kernel space whereas user application specific

memory is stored in user space
● Can a user process update its segment register?

o Yes, there are only 6 segment registers but a process could have thousands of
segments, and it might want to switch to a different segment for which it will update
its segment register (except CS, why?)

14

CSE231: Operating Systems

Lecture 16: Segmentation

© Vivek Kumar

Segmentation in Linux
● Linux uses segmentation in a very limited form on modern

x86 64-bit processors
o Simplifies the memory management
o Portability across non-x86 architectures

● Each segment register has exact same base and bound
(effectively disabling segmentation)
o Base is 0 and bound is 232 - 1
o Privilege is set as per kernel or user accessible segment

● How is then VA to PA mapping carried out?
o Paging!

15

CSE231: Operating Systems

Lecture 16: Segmentation

© Vivek Kumar

Segmentation Summary
● Advantages

o Limited hardware support (GDTR, 6 segments, etc.)
o Reduces internal fragmentation (exact amount of memory allocated)

● Disadvantages
o Difficult to increase the memory size once allocated if there is no

contiguous chunk of unused physical memory of the new size
o Favors external fragmentation due to allocation of variable sized

memory chunk for each segments
o Swapping out to disk has huge overheads, as an entire segment’s

memory would be swapped out if it is unused

16

CSE231: Operating Systems

Lecture 16: Segmentation

© Vivek Kumar

Reference
● Chapter 16 in OSTEP book (“Segmentation”)

17

CSE231: Operating Systems

Lecture 16: Segmentation

© Vivek Kumar

Next Lecture
● Introduction to paging

o If you miss this lecture then you would have hard time
understanding Lectures 18-20

18

