Lecture 16: Segmentation

Vivek Kumar
Computer Science and Engineering
IHIT Delhi
vivekk@iiitd.ac.in

E CSEZ231: Operating Systems

Last Lecture

Virtual memory

Process 1

Physical memory

Lecture 16: Segmentation

Main memory

Main memory

Some
: mapping
Virtual memory .
algorithm
Processn
CPU Chip
Virtual Physical
address L address (.
(VA) i (PA) _ 1.
Core-0 > 2 | 20| F——->
—> 2:
3 50 3
MMU 4
. 5:
Virtual Physical 6:
address S B address 7:
VA i (PA) '
Core-1 (vA) > [2 [8:
3 49
MMU
M-1

Memory Access

[E CSEZ231: Operating Systems

o
Physical address ;
chu (N ® \We need some
1 4 kind of mapper
A between VM-PM
as VM (virtual
w1 memory) too bi
Main memory Ehﬁn avalllable M
. Memory Access 0: p ySICa
CPUChip physica ; memory)
address address
CPU va ::: Bmd | PA) L31 O One-t_O-Oﬂe
i - 5: _ mapping
AL > o Using MMU
8. table
o Dynamic
M-1 relocation using
base/bound
Memory Access reg ISte rs
Virtual Address Physical Address " Prone to .
U T6 KB fragmentation
1KB — 17 KB
3000 — 19384
4400 — Fault (out of bounds)

© Vivek Kumar

o eowelmseamenson
Today’s Class

® Segmentation

® Segment registers
® Global Descriptor Table (GDT)

1D

Lecture 16: Segmentation

Loader View

.vivek[:ﬁmssum: | $ read(.elf -1 fib | ’ PHDR index 3

E1lf file type is DYN (Position-Independent Executable file)

52::\; gginzle:igggam headers, starting at offset 52 O Startlng Vlrtual addreSS IS 4096 and
Program Headers: tOtaI Slze 632

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0x000034 0x00000034 Ox000PV034 Ox00160 Ox00160 x4 .
INTERP 0x000194 0x00000194 Ox00000194 Ox00013 0x00013 ox1 PH D R IndeX 4

[Requesting program interpreter: /lib/ld-linux.so.2]

DYNAMIC 0x002edc 0x00VO3edc Ox00PO3edc OxPOOT8 Ox0VLOT8 x4
GNU_STACK 0x000000 0x00000000 OxP0VVVOVD Ox000V0 Ox00000 0x10
Segment Sections...

LowD Ox061000 0x00001000 0x00001000 Ox00278 0x00278 R E 0x1000 o Starting virtual address is 8192 and
PUIRELTD 0xG02edh Dx00003edl Ox0Bt03edh xoptzc Daptac & o o Starting virtual address is 16084
o0 ® Non-contiguous memory layout

LOAD 0x002000 0x00002000 Ox00002000 Ox00134 Ox00134 x1000 t t I 308
LOAD 0UxX002ed4 OxvVVV3eds4 VXPUYVV3ed4 UXVV134 UXVV13C x1000 O a Slze
GNU_EH_FRAME 0x002020 0x00002020 0x00002020 9x00O3c Ox00O3c Ox4
Section to Segment mapping:

01 .interp

05 .init_array .fini_array .dynamic .got .data .bss

09

02 .:!.n1‘:erp .note.gnu.build-id .r.\ofe.ABI—tag .gnu.hash .dynsym .dynst acrOSS Segments (inter_segment)
06 .dynamic
10 .init_array .fini_array .dynamic .

ikt grmey - fini_arma Contiguous memory within
G lentramenar segments (intra-segment)

E CSE231: Operating Systems © Vivek Kumar 3

Lecture 16: Segmentation

ELF Segment Allocations

4GB ® EXxact size for stack and heap size
cannot be known upfront

o Hello world program

Stack = Minimal sized stack and heap

o Recursive Fibonacci program
= Large stack but minimal sized heap

Heap o Recursive merge sort program
= Large stack and large heap
et ® Observations
text o Each segment (stack, heap, data and text)

has different memory requirements

0

E CSE231: Operating Systems © Vivek Kumar

o wstesemenan
Mapping Virtual to Physical Address

® Approaches
1. Virtual address is same as the physical address

2. Virtual address is not the same as physical address
a) Using base & bound for VA to PA mapping
b) Using segmentation for VA to PA mapping

1D

Lecture 16: Segmentation

Approach-2: Segment Wise Base/Bound

9000

6000
5000

3000

2000

1000

Stack

Heap

.data

text

Each segment can have its own (“personal”) base and bound
values

o Segmentation

Each virtual address can have few bits to specify the segment
they belon _ge.g., 2 bits to specify 4 different segments), and
remaining Dbits t0 specify the offsét into that segment

L em

Selector

Example: How to access virtual address 250 (binary: 11111010)?
Find the segment from the segment selector (e.g., data for first two bits)
Find the offset (111010) = 58

Find the base for this segment (Base=2000)

Check if offset within bounds (Bound=1000)
Physical address = 2058

oo~

E CSE231: Operating Systems © Vivek Kumar 6

Lecture 16: Segmentation

Non-Contiguous Inter-Segment Memory

10000

8000

Heap

7000

4000
3000

2000
1900

900

Stack

text

.data

® As the base and bound is separate for each segment,
now it is not a requirement to have a contiguous chunk
of physical address space for the process’s address
space

O

Better space management and reduction in fragmentation

® Example: How to access virtual address 250 (binary:
11111010)?

1.

hwi

E CSEZ231: Operating Systems

Find the segment from the segment selector (e.g., data for
first two blts%

Find the offset (111010) = 58

Find the base for this segment (Base=900)
Check if offset within bounds (Bound=1000)
Physical address = 958

© Vivek Kumar 7

Lecture 16: Segmentation

Accessing Segment’s Base/Bound

10000

8000

Heap

7000

Stack

4000

3000

2000
1900

900

text

.data

® How to access base and bounds of individual
segments?

® Can we store the segments and their base/bound
values in a MMU table?

o Yes, but it would require iterating through the MMU
table entries [O(n)]
o Any simple technique?

= Hardware support by providing dedicated registers on
each core

E CSE231: Operating Systems © Vivek Kumar 8

Lecture 16: Segmentation

Hardware Support for Segmentation

® X386 platform supports six segment registers per CPU
o CS (Code Segment)
o SS (Stack Segment)
o DS (Data Segment)
o ES, FG, and GS

= General purpose

® Reduced address translation time as single CPU cycle required
to access registers

® A program could have thousands of segments, but at any given
time it can only use a maximum of 6 segment registers on x86

[E CSE231: Operating Systems © Vivek Kumar

Lecture 16: Segmentation

Segment Registers

7000
Stack
Physical
4000 address
3000 (PA ‘
text
2000 tam
1900
.data ’
900 Seg Base Bound
Virtual Address S | 2000 1000
(VA) ss | a000 | 3000 [
CPU DS | 900 1000
T CPU Chip MMU Table

Main memory

E CSEZ231: Operating Systems

© Vivek Kumar

MMU table can now
have entries for
each segment
registers and their
corresponding base
and bound values

Hardware provides
special support for
“MMU table”

10

Lecture 16: Segmentation

Global Descriptor Table (GDT)

_ Base | Bound|Type| Prv
GDTR 2000 | 3000 | RE | U
4000 | 7000 [RW | U

900 | 1900 |[RW | U
Similar to IDT, there is also a GDT stored in memory (DRAM)

Usually one GDT per processor
Each CPU has a dedicated register (GDTR) that holds the starting address of this GDT

Each entries in GDT has a base-bound pair, privilege mode for this physical memory segment
(kernel vs user space), memory access type (read wrlte/executablef etc.

Still, too many operations for each virtual memory accesses
1. Load segment selector from the virtual address

2. Load GDT offset by looking into segment register
3. Load GDTR and add the above offset to get index
4. Load base and bound values stored at that index

How to directly access segment’s base/bound?
@ Add more hardware support!

Note: There is also another table Local

Descriptor Table (LDT) in x86, which is

per-process unlike the GDT. GDT can
store base/bound for the LDTs

E CSE231: Operating Systems © Vivek Kumar 11

Lecture 16: Segmentation

Caching of Base/Bound Per Register

Visible Part Hidden Part

GDT index Base Address, Limit, Access Information | CS
SS
DS
ES
FS
GS

® Each segment register has a visible and a hidden part
o Visible part is programable and it is an index into the GDT for that
particular segment register

o The hidden part is non-programable and it stores the base, bound
(a.k.a limit) and access information for each segment register (cache)

» |tis cached automatically the first time a GDT index is accessed
= No need to access GDT until a context switch is done (\Why?)
= No extra CPU cycles wasted for accessing GDT in VA to PA translation

E CSE231: Operating Systems © Vivek Kumar

12

Lecture 16: Segmentation

A System Using Segmentation

void scheduler() { ® Index into the GDT
while(true) {
lock(process_table); for a” the Se ment
)
For‘egi?(Proiercs p: ;EZS$§1ing_algorithm(pr‘ocess_table)) { reg|SterS are
if(p->state != .
continue; reloaded during
| tate - UGS context switch
unlock(process table); .
swtch_ézgment_FEgist()ers(scheduler_process, P); ® It aISO aUtomat|CaIIy
o e Processy P updates the values
lock(process_table); stored inside the
l};nlock(pr‘ocess_table); hldden part Of eaCh
- 7 segment register
(see previous slide)

E CSE231: Operating Systems © Vivek Kumar 13

Lecture 16: Segmentation

Points to Ponder

Can user process update GDTR to point to a new GDT?
o No, it can only be done at the boot time by the OS running in privileged mode

® As GDT is stored in memory, can some rouge process can easily change
the values stored inside the GDT?

o No, GDT is stored in physical memory location that is accessible only to the OS

o Updates to GDT entries are only carried out by OS in privileged mode (e.g.,
allocating process address space during exec¥

® As GDT is stored in memory, can some rouge process access memory
segments related to the OS code?

o No, recall that each entry inside the GDT also has a privilege information stored
o OS specific memory is stored in the kernel space whereas user application specific
memory is stored in user space
® Can a user process update its segment register?

o Yes, there are only 6 segment registers but a process could have thousands of
segments, and it might want to switch to a different segment for which it will update
its segment register (except CS, why?)

E CSE231: Operating Systems © Vivek Kumar

Lecture 16: Segmentation

Segmentation in Linux

® Linux uses segmentation in a very limited form on modern
Xx86 64-bit processors

o Simplifies the memory management
o Portability across non-x86 architectures

® Each segment register has exact same base and bound
(effectively disabling segmentation)

o Baseis 0 and bound is 232 - 1
o Privilege is set as per kernel or user accessible segment

® How is then VA to PA mapping carried out?
o Paging!

E CSE231: Operating Systems © Vivek Kumar

15

Lecture 16: Segmentation

Segmentation Summary

® Advantages

o Limited hardware support (GDTR, 6 segments, etc.)
o Reduces internal fragmentation (exact amount of memory allocated)

® Disadvantages

o Difficult to increase the memory size once allocated if there is no
contiguous chunk of unused physical memory of the new size

o Favors external fragmentation due to allocation of variable sized
memory chunk for each segments

o Swapping out to disk has huge overheads, as an entire segment’s
memory would be swapped out if it is unused

E CSE231: Operating Systems © Vivek Kumar 16

S lecweteSegmenmton
Reference

® Chapter 16 in OSTEP book (“Segmentation™)

1D

o tewetSegmenwon
Next Lecture

® Introduction to paging

o If you miss this lecture then you would have hard time
understanding Lectures 18-20

1D

