Lecture 17: Introduction to Paging

Vivek Kumar
Computer Science and Engineering
IHIT Delhi
vivekk@iiitd.ac.in

Last Lecture

Heap

Stack

text

.data

9000 10000
Stack
6000 7088
5000 |:>
Heap
3000 4000
.data 3000
2000 - 2000
te
1000 1900
900
Base |Bound|Type| Prv
2000 { 3000 | RE| U
4000 | 7000 |RW | U
900 (1900 ([RW| U

Global Descriptor Table (GDT)

E CSEZ231: Operating Systems

Lecture 17: Introduction to Paging

Visible Part Hidden Part
GDT index Base Address, Limit, Access Information | CS

SS

DS

ES Segment

FS Selector (ST

GS

Segment wise base/bound enables non-contiguous inter-
segment memory

VA has segment selector bits to identify the segment and an
offset into that segment

Base and bound for each segment stored in GDT

@)

Address of GDT stored in GDTR

x86 platform supports six segment registers per CPU

O
O
O

@)

@)

VA segment selector helps in choosing segment register
Each segment register contains the offset into GDT

Ir#je>§ into GDT is sum of GDT base address inside GDTR and above
offse

8flgs_|_et inside VA added to the segment’s base address obtained from

Base/bound is cached inside segment register’s hidden part

Segment registers must be saved/restored at context switch

© Vivek Kumar 1

o wetTaenoPeng
Today’s Class

® Introduction to paging

1D

o eowefiwadenoPeng
Mapping Virtual to Physical Address

® Approaches

1. Virtual address is same as the physical address

2. Virtual address is not the same as physical address
a) Using base & bound for VA to PA mapping
b) Using segmentation for VA to PA mapping
c) Paging
a) Using Page Table (PT) in RAM and having a base register for PT

1D

Paging

Physical Memory

E CSEZ231: Operating Systems

Lecture 17: Introduction to Paging

® Segmentation is easy to implement but

it has major drawbacks because
segments could have variable sized
memory allocation

o Can lead to external fragmentation

o To allocate space for a new process,
segments of some other process has to
be swapped to the disk (huge overhead)

Paging solves both the above issues
by dividing the available memory into
small and fixed size blocks (pages)

o The memory can then be viewed as an
array of fixed sized slots

o For example, with a page size of 8 bytes,
we can have an array of 8 pages on a
DRAM whose size is 64 bytes

© Vivek Kumar

Lecture 17: Introduction to Paging

Total Number of Pages

® Default page size on Linux is 4096 bytes (4KB)

® Pages on physical memory depends on DRAM size
o Assume DRAM size is 64GB, then total number of pages in physical
memory will be 64GB/4KB, i.e., 16 x 10° pages
® Pages in virtual memory is fixed as per the addressing mode
o Total number of pages in 32-bit addressing mode is 23%/4KB, i.e., 2%°
o Total number of pages in 64-bit addressing mode is 2°4/4KB, i.e., 2°2

If you think of a 32-bit address space as the size of a tennis court, a 64-bit address space is
about the size of Europe(!) -- OSTEP Book

E CSE231: Operating Systems © Vivek Kumar 5

Paging

Virtual Memory

E CSEZ231: Operating Systems

Lecture 17: Introduction to Paging

Physical Memory

© Vivek Kumar

Process’s segments would still
be of variable size, but now
instead of a contiguous chunk
of memory, they could have
non-contiguous mapping
with physical pages (both
inter/intra-segment)

How about internal
fragmentation?

o Yes, if a segment requires 5000
bytes of memory, it would have
2 page allocations where 4092
bytes would forever remain free
In the second page

Paging

Virtual Memory

E CSEZ231: Operating Systems

1

Lecture 17: Introduction to Paging

Physical Memory

|

© Vivek Kumar

Swapping out to disk can still
happen, but where would the
overheads will be minimal?

o Segmentation Or paging?

Lesser overheads in paging

as compared to

segmentation

o Instead of swappinfg out an
entire segment, only unused
pa?es of program segment(s)
will be swapped out

Issue still remaining

o How to map Virtual Page
Number (VPN) to Ph);su:al
Page Number (PPN)*

Lecture 17: Introduction to Paging

Mapplng VPN to PPN ® Mapping of VPN to

PPN is carried out
using a data structure
called as Page Table

It is stored in DRAM

Each CPU has a Page
Table Base Register
(PTBR) that holds the
base address anc
Do Table Page Table Length
Virtual Memory) Physical Memory Register (PTLR) that
holds the size of the
page table

E CSE231: Operating Systems © Vivek Kumar 8

tu A N N O P W

_ Page#0
0 | Page#l
: __ Page#)
2 _ Page#3
3
; _ Page#d
; _ Page#5
; _Page#t6
7 | Page#7

6

A System Using Paging

void scheduler() {
while(true) {
lock(process_table);
foreach(Process p: scheduling_algorithm(process_table)) {
if(p->state != READY) {
continue;
}
p->state = RUNNING;
unlock(process_table);
swtch_pagetable_base_registers(scheduler_process, p);
swtch(scheduler_process, p);
// p is done for now..
lock(process_table);
}

unlock(process_table);

¥

/ 4

1D

Page table resides
INn memory

Process’'s PCB has
a field to store
PTBR

PTBR of a running
process is saved
during context
switch

Segmentatio

Segmentation

Paging

E CSEZ231: Operating Systems

Lecture 17: Introduction to Paging

n Along with Paging

Segmentation cannot be disabled in x86 processors,
but'address translation is complex using the
segmentation-based approach

o Hence, to simplify the address translation, segment registers

are set to have the same base (0) and bound(232-1) values
(Lecture #16)

The address visible to a programmer is actually called
as Logical address, as it has an associated segment
selector (Lecture #16)

o Segmentation converts this logical address to linear address,
which is then converted into virtual address to support paging

However, as the base and bound of each segment
redglsters maps to entire 23> memory size (4GB), logical
address will be the same as virtual address

Hence, we will call the address visible to the
programmer as a virtual address in all the remaining
slides/lectures

© Vivek Kumar 10

Lecture 17: Introduction to Paging

Encoding VPN inside Virtual Address

® How many VAs can reside in a 4KB page size?
o 4096 bytes/4 bytes = 1024 virtual addresses

® How to find the VPN for a given VA?
o Encode (prefix) the VPN inside each VA (next slide)

® How many bits required to represent a VPN for pages of N
bytes in a virtual memory of M bytes (total M/N pages)?
o M=64 (26) and N=16
= Pages = 4 and bits required to identify 4 pages are 2 (22=4)
o M=4GB (2°?) and N=4KB
= Pages = 232/4096 = 220 and bits required to identify 220 pages are 20

E CSE231: Operating Systems © Vivek Kumar 11

Two Components of a Virtual Address

\)\ J \)\ J
| | | |

Byte offset in a page . Byte offset in a page of
of size 2% bytes (16) VPN in 1024 pages size 2° bytes (64)

VPN in 4 pages

6-bit addressing with page 16-bit addressing with page
size of 16 bytes size of 64 bytes
\ A J
| |
VPN in 220 pages Byte offset in a page of

size 212 bytes (4096)
32-bit addressing with page size of 4KB

1D

Lecture 17: Introduction to Paging

How to Implement Simple Paging?
Virtual Address:

PageTablePtr
PageTableSize

Access Error

Physical Address

page#l "|VR

Access Error

® Page Table (One per process and resides in physical memory)
o Contains physical page and permission for each virtual page (e.g. Valid bits, Read, Write, etc)

® Virtual address mapping
o Offset from Virtual address copied to Physical Address
o Virtual page # is all remaining bits (Physical page # copied from table into physical address)

o Check Page Table bounds and permissions

E CSE231: Operating Systems Kubiatowicz CS162 © UCB Spring 2023

13

Lecture 17: Introduction to Paging

A Simple Page Table in Action

0x00 0x00
OOO(I 0000
0 n 0x04
0x04 1
0000 0100

2[7 | 2000010 0x08

T *QH

0x08 0000 1000 Page 0x0C
. Table
Virtual
8-bit addressing mode 0x10
Memory Page size is 4 bytes

Total number of VPN = 28/4 = 26 Physical
6 bits required to represent VPN
2 bits for specifying offset Memory

i

J

k
|

€
f
g
b
d
b
C
d

E CSE231: Operating Systems Kubiatowicz CS162 © UCB Spring 2023

Sharing of Pages

Virtual Address
(Process A):

This physical page
appears in address
space of both processes
(Recall, shared memory segment)

E—

Virtual Address

1D

Lecture 17: Introduction to Paging

Physical Page Allocation in Linux

char x array = (charx) malloc(sizeof(char)*1024%1024%1024);

0 | 1.3% A
T[] 24.2% 5
6

0.0% |
| 2 A% 7 |

|| SRERRRRR 963M/7.676G Tasks: 183, 694 thr; 1 running
429M/2.09006 Load average: 0.59 0.60

® The above program allocates 1GB memory using malloc, but
output of htop command doesn’t show 1GB memory usage!
o | did not see any change to that memory even after the above

program finished, which implies its default memory usage in my
system

= What is happening?

E CSE231: Operating Systems © Vivek Kumar 16

Lecture 17: Introduction to Paging

Physical Page Allocation in Linux

char * array = (charx) malloc(sizeof(char)*1024%1024%1024);
memset(array, 0x00, sizeof(char)*x1024%1024%1024);

0.7% it
0.7% 5

|

|

NERRRARER 33.3% 6 |
| 2 0% 7

|

1]] [1I1]]1181.94G/7.676G Tasks: 184, 694 thr; 1 running
429M/2.09006 Load average: 0.55 0.59

® Just writing to that allocated space changes the output of
htop command to show the 1.94GB memory usage (1GB
from the program and 0.94GB of default memory)

o What just happened now?

E CSE231: Operating Systems © Vivek Kumar

17

Lecture 17: Introduction to Paging

Physical Page Allocation in Linux

® Linux uses lazy memory allocation policy to save memory
space (RAM is precious!)
o Not just for malloc, but even while loading program segments
o Physical memory for the segments are not allocated until accessed

= E.g., if a program has a .data segment, but the user doesn’t accesses
the global variables (residing in .data segment) then it doesn’t make
sense to allocate memory for .data segment upfront (load time)

® S0, how the physical memory is allocated?

o During the program execution, when the program attempts to
read/write to that memory

= Linux uses a mechanism known as Page Fault for lazy page allocation

E CSE231: Operating Systems © Vivek Kumar 18

S ewetmwenwPer
Page Fault in Action

Logical Address

Linear Address

Virtual Address

® Program

attempts to
access an
address

Segmentation
converts this
logical address
to linear
address, which
IS then
converted into
virtual address
to support

paging

1D

Lecture 17: Introduction to Paging

Page Fault in Action

PageTablePtrA MMU

Virtual Address
Offset

E CSEZ231: Operating Systems

page #0 V,R
page #l V,R
page #3 V,R,W
page #4 N
page #5 V,R,W

© Vivek Kumar

DRAM

® This address is
valid (i.e., it
points to a
valid heap
allocation)

® However, the

page table
doesn’t have

any entry for
this VA to PA

mapping

20

Lecture 17: Introduction to Paging

Page Fault in Action

page #0 V,R
PageTablePtrA MMU page #l V,R
Virtual Address page ztj V,R,W
Offset page #4 N
page #5 V,R,W
page fault

exception

Operating

System Page Fault
Handler

E CSE231: Operating Systems © Vivek Kumar

DRAM

Program state
IS saved and
Interrupt 14 is
generated by
the MMU
Indicating page
fault exception

21

Lecture 17: Introduction to Paging

Page Fault in Action ORAV_ @ OS will decide
page #0 V,R what action is to
PageTablePtrA MMU page #| V,R be taken
X o It could be that

the page was

allocated but

Ol page #4 N swapped out to
page #5 V,R,W disk (i.e.,

page fault SSS?S‘S I e wil

- see in future
7 exception lecture)

Virtual Address page #3 V,R,W

Operating ® OS finds out that

no allocation
System Page Fault was ever made
Handler

E CSE231: Operating Systems © Vivek Kumar 22

Lecture 17: Introduction to Paging

Page Fault in Action

® OS will allocate

page #0 V,R page(s) on
PageTablePtrA MMU page #| V,R DRAM
page #2 V,R,W
Virtual Address page #3 V,R,Vv ® !Dage table entry
e — = IS updated
page #5 V,RW ® Program
page fault execution (state)
exception IS restored from
the same
o . Allocate page location that
S pf rating on RAM caused the page
ystem B Page Fault fault
Handler

E CSE231: Operating Systems © Vivek Kumar 23

- lecueiT:nwodutontoPagng
Reference

® Chapter 18 in OSTEP book (“Paging Introduction™)

1D

S ecwetTimdwiontoPegng
Next Lecture

® Translation Lookaside Buffer (TLB)

® Quiz-3 during next lecture
o Syllabus: Lectures 13, 15-17

1D

