
CSE231: Operating Systems

Lecture 17: Introduction to Paging

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Last Lecture
● Segment wise base/bound enables non-contiguous inter-

segment memory
● VA has segment selector bits to identify the segment and an

offset into that segment
● Base and bound for each segment stored in GDT

o Address of GDT stored in GDTR
● x86 platform supports six segment registers per CPU

o VA segment selector helps in choosing segment register
o Each segment register contains the offset into GDT
o Index into GDT is sum of GDT base address inside GDTR and above

offset
o Offset inside VA added to the segment’s base address obtained from

GDT
o Base/bound is cached inside segment register’s hidden part

● Segment registers must be saved/restored at context switch
1

GDT index

Global Descriptor Table (GDT)

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Today’s Class
● Introduction to paging

2

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Mapping Virtual to Physical Address
● Approaches

1. Virtual address is same as the physical address
2. Virtual address is not the same as physical address

a) Using base & bound for VA to PA mapping
b) Using segmentation for VA to PA mapping
c) Paging

a) Using Page Table (PT) in RAM and having a base register for PT

3

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Paging ● Segmentation is easy to implement but
it has major drawbacks because
segments could have variable sized
memory allocation
o Can lead to external fragmentation
o To allocate space for a new process,

segments of some other process has to
be swapped to the disk (huge overhead)

● Paging solves both the above issues
by dividing the available memory into
small and fixed size blocks (pages)
o The memory can then be viewed as an

array of fixed sized slots
o For example, with a page size of 8 bytes,

we can have an array of 8 pages on a
DRAM whose size is 64 bytes

4

Page #0
Page #1
Page #2
Page #3
Page #4
Page #5
Page #6
Page #7

Physical Memory

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Total Number of Pages
● Default page size on Linux is 4096 bytes (4KB)
● Pages on physical memory depends on DRAM size

o Assume DRAM size is 64GB, then total number of pages in physical
memory will be 64GB/4KB, i.e., 16 x 106 pages

● Pages in virtual memory is fixed as per the addressing mode
o Total number of pages in 32-bit addressing mode is 232/4KB, i.e., 220

o Total number of pages in 64-bit addressing mode is 264/4KB, i.e., 252

If you think of a 32-bit address space as the size of a tennis court, a 64-bit address space is
about the size of Europe(!) -- OSTEP Book

5

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Paging
● Process’s segments would still

be of variable size, but now
instead of a contiguous chunk
of memory, they could have
non-contiguous mapping
with physical pages (both
inter/intra-segment)

● How about internal
fragmentation?
o Yes, if a segment requires 5000

bytes of memory, it would have
2 page allocations where 4092
bytes would forever remain free
in the second page

6

Page #0
Page #1
Page #2
Page #3
Page #4
Page #5
Page #6
Page #7

Physical Memory

Page #0
Page #1
Page #2
Page #3
Page #4
Page #5
Page #6
Page #7

Virtual Memory

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Paging ● Swapping out to disk can still
happen, but where would the
overheads will be minimal?
o Segmentation Or paging?

● Lesser overheads in paging
as compared to
segmentation
o Instead of swapping out an

entire segment, only unused
pages of program segment(s)
will be swapped out

● Issue still remaining
o How to map Virtual Page

Number (VPN) to Physical
Page Number (PPN)?

7

Page #0
Page #1
Page #2
Page #3
Page #4
Page #5
Page #6
Page #7

Physical Memory

Page #0
Page #1
Page #2
Page #3
Page #4
Page #5
Page #6
Page #7

Virtual Memory

Page #8
Page #9
Page #10

DISK

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Mapping VPN to PPN ● Mapping of VPN to
PPN is carried out
using a data structure
called as Page Table

● It is stored in DRAM
● Each CPU has a Page

Table Base Register
(PTBR) that holds the
base address and
Page Table Length
Register (PTLR) that
holds the size of the
page table

8

Page #0
Page #1
Page #2
Page #3
Page #4
Page #5
Page #6
Page #7

Physical Memory

Page #0
Page #1
Page #2
Page #3
Page #4
Page #5
Page #6
Page #7

Virtual Memory

VPN PPN

0 3

1 1

2 0

3 7

4 2

5 4

6 5

7 6

Page Table

PTBR

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

A System Using Paging
● Page table resides

in memory
● Process’s PCB has

a field to store
PTBR

● PTBR of a running
process is saved
during context
switch

9

void scheduler() {
 while(true) {
 lock(process_table);
 foreach(Process p: scheduling_algorithm(process_table)) {
 if(p->state != READY) {
 continue;
 }
 p->state = RUNNING;
 unlock(process_table);
 swtch_pagetable_base_registers(scheduler_process, p);
 swtch(scheduler_process, p);
 // p is done for now..
 lock(process_table);
 }
 unlock(process_table);
 }
}

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Segmentation Along with Paging
● Segmentation cannot be disabled in x86 processors,

but address translation is complex using the
segmentation-based approach
o Hence, to simplify the address translation, segment registers

are set to have the same base (0) and bound (232-1) values
(Lecture #16)

● The address visible to a programmer is actually called
as Logical address, as it has an associated segment
selector (Lecture #16)
o Segmentation converts this logical address to linear address,

which is then converted into virtual address to support paging
● However, as the base and bound of each segment

registers maps to entire 232 memory size (4GB), logical
address will be the same as virtual address

● Hence, we will call the address visible to the
programmer as a virtual address in all the remaining
slides/lectures

10

Logical Address

Linear Address

Virtual Address

Physical Address

Segmentation

Paging

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Encoding VPN inside Virtual Address
● How many VAs can reside in a 4KB page size?

o 4096 bytes/4 bytes = 1024 virtual addresses
● How to find the VPN for a given VA?

o Encode (prefix) the VPN inside each VA (next slide)
● How many bits required to represent a VPN for pages of N

bytes in a virtual memory of M bytes (total M/N pages)?
o M=64 (26) and N=16

§ Pages = 4 and bits required to identify 4 pages are 2 (22=4)
o M=4GB (232) and N=4KB

§ Pages = 232/4096 = 220 and bits required to identify 220 pages are 20

11

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Two Components of a Virtual Address

12

4 bits2 bits

VPN in 4 pages Byte offset in a page
of size 24 bytes (16)

6-bit addressing with page
size of 16 bytes

12 bits20 bits

VPN in 220 pages Byte offset in a page of
size 212 bytes (4096)

32-bit addressing with page size of 4KB

6 bits10 bits

VPN in 1024 pages Byte offset in a page of
size 26 bytes (64)

16-bit addressing with page
size of 64 bytes

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

How to Implement Simple Paging?

● Page Table (One per process and resides in physical memory)
o Contains physical page and permission for each virtual page (e.g. Valid bits, Read, Write, etc)

● Virtual address mapping
o Offset from Virtual address copied to Physical Address
o Virtual page # is all remaining bits (Physical page # copied from table into physical address)
o Check Page Table bounds and permissions

13

Physical Address

Offset

Offset
Virtual
Page #Virtual Address:

Access Error

>PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R

page #1 V,R

V,R,W

V,R,W

N

V,R,W

page #1 V,R

Check Perm

Access Error

Physical
Page #

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

A Simple Page Table in Action

14

a
b
c
d
e
f
g
h
i
j
k
l

0x00

0x04

0x08

Virtual
Memory

0x00

i
j
k
l

0x04

0x08

e
f
g
h

0x0C

a
b
c
d

0x10
Physical
Memory

4
3
1

Page
Table

0

1

2

0000 0000
0001 0000

0000 0100
0000 1100

0000 1000

0000 0100

Kubiatowicz CS162 © UCB Spring 2023

• 8-bit addressing mode
• Page size is 4 bytes
• Total number of VPN = 28/4 = 26

• 6 bits required to represent VPN
• 2 bits for specifying offset

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Sharing of Pages

15

PageTablePtrB

page #0

page #1

page #2

page #3

page #5

V,R

N

V,R,W

N

page #4 V,R

V,R,W

page #2 V,R

OffsetVirtual
Page #

Virtual Address
(Process A):

PageTablePtrA

page #0

page #1

page #3

page #4

page #5

V,R

V,R

page #2 V,R,W

V,R,W

N

V,R,W

OffsetVirtual
Page #

Virtual Address
(Process B):

Shared
Page

This physical page
appears in address

space of both processes
(Recall, shared memory segment)

page #2 V,R,W

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Physical Page Allocation in Linux

16

● The above program allocates 1GB memory using malloc, but
output of htop command doesn’t show 1GB memory usage!
o I did not see any change to that memory even after the above

program finished, which implies its default memory usage in my
system
§ What is happening?

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Physical Page Allocation in Linux

17

● Just writing to that allocated space changes the output of
htop command to show the 1.94GB memory usage (1GB
from the program and 0.94GB of default memory)
o What just happened now?

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Physical Page Allocation in Linux

18

● Linux uses lazy memory allocation policy to save memory
space (RAM is precious!)
o Not just for malloc, but even while loading program segments
o Physical memory for the segments are not allocated until accessed

§ E.g., if a program has a .data segment, but the user doesn’t accesses
the global variables (residing in .data segment) then it doesn’t make
sense to allocate memory for .data segment upfront (load time)

● So, how the physical memory is allocated?
o During the program execution, when the program attempts to

read/write to that memory
§ Linux uses a mechanism known as Page Fault for lazy page allocation

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Page Fault in Action

19

OffsetVirtual
Page #

Virtual Address

● Program
attempts to
access an
address

● Segmentation
converts this
logical address
to linear
address, which
is then
converted into
virtual address
to support
paging

Logical Address

Linear Address

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Page Fault in Action

20

OffsetVirtual
Page #

Virtual Address

PageTablePtrA

page #0

page #1

page #3

page #4

page #5

V,R

V,R

V,R,W

N

V,R,W

DRAM ● This address is
valid (i.e., it
points to a
valid heap
allocation)

● However, the
page table
doesn’t have
any entry for
this VA to PA
mapping

MMU

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Page Fault in Action

21

OffsetVirtual
Page #

Virtual Address

PageTablePtrA

page #0

page #1

page #3

page #4

page #5

V,R

V,R

V,R,W

N

V,R,W

DRAM ● Program state
is saved and
Interrupt 14 is
generated by
the MMU
indicating page
fault exceptionpage fault

exception

Operating
System Page Fault

Handler

MMU

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Page Fault in Action

22

OffsetVirtual
Page #

Virtual Address

PageTablePtrA

page #0

page #1

page #3

page #4

page #5

V,R

V,R

V,R,W

N

V,R,W

DRAM ● OS will decide
what action is to
be taken
o It could be that

the page was
allocated but
swapped out to
disk (i.e.,
demand
paging, we will
see in future
lecture)

● OS finds out that
no allocation
was ever made

page fault
exception

Operating
System Page Fault

Handler

MMU

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Page Fault in Action

23

OffsetVirtual
Page #

Virtual Address

PageTablePtrA

page #0

page #1

page #3

page #4

page #5

V,R

V,R

V,R,W

N

V,R,W

DRAM ● OS will allocate
page(s) on
DRAM

● Page table entry
is updated

● Program
execution (state)
is restored from
the same
location that
caused the page
fault

page fault
exception

Operating
System Page Fault

Handler

Allocate page
on RAM

MMU
page #2 V,R,W

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Reference
● Chapter 18 in OSTEP book (“Paging Introduction”)

24

CSE231: Operating Systems

Lecture 17: Introduction to Paging

© Vivek Kumar

Next Lecture
● Translation Lookaside Buffer (TLB)
● Quiz-3 during next lecture

o Syllabus: Lectures 13, 15-17

25

