Lecture 18: Translation
Lookaside Buffer (TLB)

Vivek Kumar
Computer Science and Engineering
IHIT Delhi
vivekk@iiitd.ac.in

Lecture 18: Translation Lookaside Buffer (TLB)

Last Lecture

Page #0

Page #|

Page #2

20 bits 12 bits

Page #3

L A J

Page #4

|
VPN in 220

Page #5

Byte offset in a page of size 212

pages bytes (4096)

Page #6

4GB address space with page size of 4KB

Page #7

Virtual Memory

_PTBR _

Page #0

Page #1

Page #2

Page #3

Page #4

Page #5

Page #6

N o 0~ W N B O

U A N N O P oW

Page #7

Page

Table Physical

Memory

How to Implement Simple Paging?

Virtual Address: Offset
PageTablePtr » page #0 VR
 page #| R
page #2 V,R,W
PageTabIeSize page #3 V,R,W
\ page #4 N
Access Error page #5 V.RW

E CSEZ231: Operating Systems

-Offset

Physical Address
Check Perm

'

Access Error

© Vivek Kumar

Paging divides the
available memory into
small and fixed size
blocks (4KB in Linux)

Each VA or PA
belongs to a VP or
PP, respectively, and
the corresponding
numbers are VPN

and PPN, respectively

Linux uses a
mechanism known as
Page Fault for lazy
page allocation

o tuetsTemeinlostenterme)
Today’s Class

® TLB
® Locality
® Quiz-3

1D

o lcwslsTesmenlowsceueria)
Mapping Virtual to Physical Address

® Approaches

1. Virtual address is same as the physical address

2. Virtual address is not the same as physical address
a) Using base & bound for VA to PA mapping
b) Using segmentation for VA to PA mapping
c) Paging
a) Using Page Table (PT) in RAM and having a base register for PT

b) Using Page Table (PT) in RAM and having a base register for PT as
well as a TLB cache

1D

Lecture 18: Translation Lookaside Buffer (TLB)

Page Table Entry

® Recall, a page table is a mapping between VPN to PPN

® \What kind of data structures we can use for implementing a
page table?
o Arrays?
= VPN will be the index in an array of PPN
o Hash table?
= VPN will be the key with the value as PPN

E CSE231: Operating Systems © Vivek Kumar 4

o swsmeTesselowsesmerms)
Overheads with the Page Table

-
® Time overhead

o Accessing any virtual address require one extra memory access
= Step-1is to fetch the page table base address from register (PTBR)
= Step-2is to index into the PTE and fetch the PPN

® Space overhead
o Next lecture

1D

Detour: Memory Hierarchy

—
A
LO: . .
egisters ::PU rflglste;s hold words retrieved
8IS rom L1 cache .
On chip
L1: L1 cache
Smaller (SRAM) L1 cache holds cache lines retrieved
’ from L2 cache
faster,
costlier L2: P Latency and
cache . .
per byte (SRAM) L2 cache holds cache lines CapaCIty Increases
retrieved from main memory x as we go down
L3:
Main memory

Llarger, (DRAM) Main memory holds disk blocks

sl:’wer' retrieved from local disks

cheaper

per byte L4: Local secondary storage Local disks hold files Off ch |p

(local disks) retrieved from disks on
remote network servers
L5: Remote secondary storage
) (tapes, distributed file systems, Web servers) v

v

1D

Lecture 18: Translation Lookaside Buffer (TLB)

Detour: How Bad is Latency as we go Down?

Main Memory
CPU L25 ® Another analogy
o Normalizing with
L1 latency, and
assumlng one
seconds is equal
to 4 cycles
= |1 =o0ne
Click on L1 to load from L1 Cache (4 cycles) . second
Click on L2 to load from that cache. (30 cycles)
Or click in Main Memory to load from there. (600 cycles) u L2 = 75
seconds
= Main memory =
2.5 minutes
= Hard drive = in
several days!

Animation source: https://overbyte.com.au/misc/Lesson3/CacheFun.html

E CSE231: Operating Systems © Vivek Kumar 10

https://overbyte.com.au/misc/Lesson3/CacheFun.html

Lecture 18: Translation Lookaside Buffer (TLB)

Detour: General Cache Concepts

® Cache: A
smaller, faster
Cache 4 9 10 3 storage device
that acts as a
staging area for

10

0 1 2 3 a subset of the
memory| [2 - c . data in a Ia-rger,
(DRAM) slower device

8 9 10 11

12 13 14 15

[E CSE231: Operating Systems Bryant and O’Hallaron, Lecuture 9, CMU 15-213/18-243 11

Lecture 18: Translation Lookaside Buffer (TLB)

Detour: General Cache Concepts

Request: 14 Data needed: 14

Cache 8 9 14 3 Data is in cache:

Hit! |
® Cache hit
o Datais already in the

0 1 2 3 cache
Memory 4 5 6 7
(DRAM)
3 9 10 11
12 13 14 15
0000000000000 0000

[E CSEZ231: Operating Systems Bryant and O’Hallaron, Lecuture 9, CMU 15-213/18-243

Lecture 18: Translation Lookaside Buffer (TLB)

Detour: General Cache Concepts

Request: 12 Data needed: 12
Cache 3 1 14 3 Da{ta is not in cache:
Miss!
12 Request: 12 Data is fetched from
memory
0 1 2 3
Memory 1 = 6 7 Data ls.stored in cache
(DRAM) By evicting some old data
3 9 10 11
12 13 14 15
0 0000000000600 OCGOGOSGFTS

[E CSEZ231: Operating Systems Bryant and O’Hallaron, Lecuture 9, CMU 15-213/18-243

13

Lecture 18: Translation Lookaside Buffer (TLB)

So, How to Solve Slow Access of PT?

® Provide a hardware cache per CPU for saving frequently
accessed PTE entries (different than the CPU cache L1,
L2, etc.)
o Translation Lookaside Buffer (TLB) cache that is a part of MMU
o Typically accessed in a single cycle

® Save most recent VPN->PPN mappings on TLB (plus
some more info, but not PT entry)

E CSEZ231: Operating Systems

14

TLB
Cache

Page
Table in
Memory
(DRAM)

Lecture 18: Translation Lookaside Buffer (TLB)

TLB Hit and Miss

4->10 || 9->20 || 10->9 || 3->16

0->13 || 1->14 2->5 3->16

4->10 || 5->19 || 6->18 || 7->12

8->15 || 9->20 || 10->9 || 11->6

12->8 || 13->3 || 14->4 || 15->1

E CSEZ231: Operating Systems

® TLB hit

o If entry already in TLB then have
the physical address without
reading the page table

o VPN(4)->PPN(10) is already on
TLB. Hence, no need to access PT

® TLB miss
o VPN(10)->PPN(9) mapping is not
found on TBL
o Locate PT using PTBR

o Access page table to find the
mapping and save the mapping on
cache by evicting an earlier entry

15

Lecture 18: Translation Lookaside Buffer (TLB)

Locality Helps in Caching

® Principal of Locality

o Empirical observation: Processors tend to access same set or nearby
memory locations repetitively over a short period of time

® Temporal locality: < 2

o Recently referenced items are likely to be
referenced again in the near future

® Spatial locality: (‘7

o Items with nearby addresses tend to be
referenced close together in time

E CSE231: Operating Systems © Vivek Kumar

16

Lecture 18: Translation Lookaside Buffer (TLB)

Locality Helps in Caching

® Caching helps only if application supports locality

o Let us understand the concept of locality using a simple
application called as iterative averaging

o lIterative averaging is the process of updating an array to so that
each index becomes the average of the indices one before and

one after it

o After repeating this for many iterations, the array may converge to
one set of numbers

= Repetitive pattern in several scientific applications

[E CSE231: Operating Systems © Vivek Kumar 17

o wswTesmonlowsemtems)
Iterative Averaging

//all elements zeroed —
float A[SIZE+2], B[SIZE+2]; ® FOF.S|ZE—9, the array
A will eventually
void iterative averaging() { Converge With ValueS
A[SIZE+1] = B[SIZE+1] = 1;
for (int iter=0; iter<ITERATIONS; iter++) { as 0.1,0.2,0.3, 04,
for (int j=1; J<=SIZE; J++) { 0.5,0.6, 0.7, 0.8, 0.9
) B[j] = (A[J-1] + A[j+1])/2.0;
double* temp = B;
B = A;
A = temp,;
}
}

https://classes.engineering.wustl.edu/cse231/core/index.php/lterative_Averaging

1D

https://classes.engineering.wustl.edu/cse231/core/index.php/Iterative_Averaging

Lecture 18: Translation Lookaside Buffer (TLB)

Spot the Locality

® Let us only consider the

//all elements zeroed |0ca|ity N array
void iterative_averaging() { ® Spat|a| |OCa|ity
A[SIZE+1] = B[SIZE+1] = 1;
for (int iter=0; iter<ITERATIONS; iter++) { o Inner for-loop
for (int j=1; j<=SIZE; j++) { = Reference array _
B[j] = (A[j-1] + A[j+1])/2.90; elements in succession
} (stride-1 reference
double* temp = B; pattern)
B = A; .
PR ® Temporal locality
} o Outer for-loop
h 7 = Accessing each arrays
https://classes.engineering.wustl.edu/cse231/core/index.php/lterative_Averaging elements Fepeated|y

E CSE231: Operating Systems © Vivek Kumar 19

https://classes.engineering.wustl.edu/cse231/core/index.php/Iterative_Averaging

Lecture 18: Translation Lookaside Buffer (TLB)

® Assumptions

Spatlal Local |ty o The only memory access required
are for accessing elements of
A IR arrays A and B
— \ ; A ; A ' J o SIZE=6
B o Page size (PS) of 16 bytes
01 2 3 45 6 7 » Arequires 2 pages
» B requires 2 pages
o TLB can hold 4 entries
® Inside each iteration of outer loop
Al 123 o Bisaccessed 6timesandAis
4/5 6 7 accessed 12 times (spatial locality)
gl 0 1 2 3 o Total memory accesses = 12+6=18
45 67 o TBL misses
u 2+2 =4 for (int j=1; j<=SIZE; j++) {
O TLB hltS B[j] = (A[j-1] + A[J'+1])/2.0;J
Virtual Pages Physical Pages . 10+4 = 14)

[E CSE231: Operating Systems © Vivek Kumar 20

o wswTesmonlowsemtems)
Temporal Locallty

A

B

:{
{
‘?

Iter—x

L.

Iter—x+1

R

Iter—x+2

Same indices are repeatedly
accessed across the iterations of the
outer for-loop

o Temporal locality

Total TLB misses for N number of
iterations of outer for-loop?

o 4 only!

Total page table accesses with TLB?
o 4 only!

Total page table access without TLB?
o 18N

Lecture 18: Translation Lookaside Buffer (TLB)

What to do at Context Switch?

® Need to do something, since TLBs map virtual addresses
to physical addresses
o Address Space just changed, so TLB entries no longer valid!

® Options?
o Invalidate ("Flush”) TLB: simple but might be expensive
= What if switching frequently between processes?
o Include ProcessID in TLB
= This is an architectural solution: needs hardware

E CSE231: Operating Systems Kubiatowicz CS162 © UCB Spring 2023 22

o lcwslsTesmenlowsceueria)
Putting Everything Together: Address Translation

Virtual Address:

DRAM

Physical
A;dﬁ:liess:
PageTablePtri=<— "L ______ I PPN

Page Table

1D

o swsmeTesselowsesmerms)
Putting Everything Together: TLB

Virtual Address:

W CEN. e

Physical
Address:

How does CPU caches help
apart from the help we are
getting from TLB cache?

1D

. lcueisTemwkionlookesdeBufer®)
Next Lecture

® Space overheads with the page table

1D

