
CSE231: Operating Systems

Lecture 18: Translation
Lookaside Buffer (TLB)

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

Last Lecture ● Paging divides the
available memory into
small and fixed size
blocks (4KB in Linux)

● Each VA or PA
belongs to a VP or
PP, respectively, and
the corresponding
numbers are VPN
and PPN, respectively

● Linux uses a
mechanism known as
Page Fault for lazy
page allocation

1

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

Today’s Class
● TLB
● Locality
● Quiz-3

2

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

Mapping Virtual to Physical Address
● Approaches

1. Virtual address is same as the physical address
2. Virtual address is not the same as physical address

a) Using base & bound for VA to PA mapping
b) Using segmentation for VA to PA mapping
c) Paging

a) Using Page Table (PT) in RAM and having a base register for PT
b) Using Page Table (PT) in RAM and having a base register for PT as

well as a TLB cache

3

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

Page Table Entry
● Recall, a page table is a mapping between VPN to PPN
● What kind of data structures we can use for implementing a

page table?
o Arrays?

§ VPN will be the index in an array of PPN
o Hash table?

§ VPN will be the key with the value as PPN

4

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

Overheads with the Page Table
● Time overhead

o Accessing any virtual address require one extra memory access
§ Step-1 is to fetch the page table base address from register (PTBR)
§ Step-2 is to index into the PTE and fetch the PPN

● Space overhead
o Next lecture

8

Discussion for today

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

Detour: Memory Hierarchy

9

On chip

Off chip

Latency and
capacity increases

as we go down

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

Detour: How Bad is Latency as we go Down?

10

● Another analogy
o Normalizing with

L1 latency, and
assuming one
seconds is equal
to 4 cycles
§ L1 = one

second
§ L2 = 7.5

seconds
§ Main memory =

2.5 minutes
§ Hard drive = in

several days!
Animation source: https://overbyte.com.au/misc/Lesson3/CacheFun.html

https://overbyte.com.au/misc/Lesson3/CacheFun.html

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

Detour: General Cache Concepts
● Cache: A

smaller, faster
storage device
that acts as a
staging area for
a subset of the
data in a larger,
slower device

11

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

4

4

4

10

10

10Cache

Memory
(DRAM)

Bryant and O’Hallaron, Lecuture 9, CMU 15-213/18-243

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

Detour: General Cache Concepts

● Cache hit
o Data is already in the

cache

12

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
(DRAM)

Request: 14

14

Data needed: 14

Data is in cache:
Hit!

Bryant and O’Hallaron, Lecuture 9, CMU 15-213/18-243

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

Detour: General Cache Concepts

13

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
(DRAM)

Data needed: 12Request: 12

Data is not in cache:
Miss!
Data is fetched from
memory

Request: 12

12

12

12

Data is stored in cache
By evicting some old data

Bryant and O’Hallaron, Lecuture 9, CMU 15-213/18-243

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

So, How to Solve Slow Access of PT?
● Provide a hardware cache per CPU for saving frequently

accessed PTE entries (different than the CPU cache L1,
L2, etc.)
o Translation Lookaside Buffer (TLB) cache that is a part of MMU
o Typically accessed in a single cycle

● Save most recent VPN->PPN mappings on TLB (plus
some more info, but not PT entry)

14

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

TLB Hit and Miss
● TLB hit

o If entry already in TLB then have
the physical address without
reading the page table

o VPN(4)->PPN(10) is already on
TLB. Hence, no need to access PT

● TLB miss
o VPN(10)->PPN(9) mapping is not

found on TBL
o Locate PT using PTBR
o Access page table to find the

mapping and save the mapping on
cache by evicting an earlier entry

15

0->13 1->14 2->5 3->16

4->10 5->19 6->18 7->12

8->15 9->20 10 11->6

12->8 13->3 14->4 15->1

8->15 9->20 14->4 3->16

4->10

4->10

10->9

10->9TLB
Cache

Page
Table in
Memory
(DRAM)

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

Locality Helps in Caching
● Principal of Locality

o Empirical observation: Processors tend to access same set or nearby
memory locations repetitively over a short period of time

● Temporal locality:
o Recently referenced items are likely to be
 referenced again in the near future

● Spatial locality:
o Items with nearby addresses tend to be
 referenced close together in time

16

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

Locality Helps in Caching
● Caching helps only if application supports locality

o Let us understand the concept of locality using a simple
application called as iterative averaging

o Iterative averaging is the process of updating an array to so that
each index becomes the average of the indices one before and
one after it

o After repeating this for many iterations, the array may converge to
one set of numbers
§ Repetitive pattern in several scientific applications

17

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

Iterative Averaging
● For SIZE=9, the array

A will eventually
converge with values
as 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9

18

//all elements zeroed
float A[SIZE+2], B[SIZE+2];

void iterative_averaging() {
 A[SIZE+1] = B[SIZE+1] = 1;
 for (int iter=0; iter<ITERATIONS; iter++) {
 for (int j=1; j<=SIZE; j++) {
 B[j] = (A[j–1] + A[j+1])/2.0;
 }
 double* temp = B;
 B = A;
 A = temp;
 }
}

https://classes.engineering.wustl.edu/cse231/core/index.php/Iterative_Averaging

https://classes.engineering.wustl.edu/cse231/core/index.php/Iterative_Averaging

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

Spot the Locality
● Let us only consider the

locality in array
accesses

● Spatial locality
o Inner for-loop

§ Reference array
elements in succession
(stride-1 reference
pattern)

● Temporal locality
o Outer for-loop

§ Accessing each arrays
elements repeatedly

19

https://classes.engineering.wustl.edu/cse231/core/index.php/Iterative_Averaging

//all elements zeroed
float A[SIZE+2], B[SIZE+2];

void iterative_averaging() {
 A[SIZE+1] = B[SIZE+1] = 1;
 for (int iter=0; iter<ITERATIONS; iter++) {
 for (int j=1; j<=SIZE; j++) {
 B[j] = (A[j–1] + A[j+1])/2.0;
 }
 double* temp = B;
 B = A;
 A = temp;
 }
}

https://classes.engineering.wustl.edu/cse231/core/index.php/Iterative_Averaging

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

Spatial Locality

20

● Assumptions
o The only memory access required

are for accessing elements of
arrays A and B

o SIZE=6
o Page size (PS) of 16 bytes

Ø A requires 2 pages
Ø B requires 2 pages

o TLB can hold 4 entries
● Inside each iteration of outer loop

o B is accessed 6 times and A is
accessed 12 times (spatial locality)

o Total memory accesses = 12+6=18
o TBL misses

§ 2+2 = 4
o TLB hits

§ 10+4 = 14

0 1 2 3 4 5 6 7

A

B

Virtual Pages Physical Pages

0 1 2 3
4 5 6 7
0 1 2 3
4 5 6 7

A

B

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

Temporal Locality

21

● Same indices are repeatedly
accessed across the iterations of the
outer for-loop
o Temporal locality

● Total TLB misses for N number of
iterations of outer for-loop?
o 4 only!

● Total page table accesses with TLB?
o 4 only!

● Total page table access without TLB?
o 18N

0 1 2 3 4 5 6 7

A

B

0 1 2 3 4 5 6 7

A

B

0 1 2 3 4 5 6 7

A

B

Iter=x

Iter=x+1

Iter=x+2

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

What to do at Context Switch?
● Need to do something, since TLBs map virtual addresses

to physical addresses
o Address Space just changed, so TLB entries no longer valid!

● Options?
o Invalidate (“Flush”) TLB: simple but might be expensive

§ What if switching frequently between processes?
o Include ProcessID in TLB

§ This is an architectural solution: needs hardware

22 Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

DRAM

Putting Everything Together: Address Translation

23

Virtual Address:
OffsetVPN

PageTablePtr

Page Table

OffsetPPN

Physical
Address:

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

DRAM

Putting Everything Together: TLB

24

Virtual Address:
OffsetVPN

PageTablePtr

Page Table

Offset

Physical
Address:

OffsetPPN

Physical
Address:

…

TLB

Kubiatowicz CS162 © UCB Spring 2023

How does CPU caches help
apart from the help we are

getting from TLB cache?

CSE231: Operating Systems

Lecture 18: Translation Lookaside Buffer (TLB)

© Vivek Kumar

Next Lecture
● Space overheads with the page table

25

