
CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

© Vivek Kumar

Last Lecture ● Time overheads with
page table access
o PT base address in

PTBR (1-cycle)
o Accessing PT index in

DRAM (several cycles)
● Translation look aside

buffer (TLB)
o hardware cache per

CPU for saving
frequently accessed
PTE entries (part of
MMU)

● Locality helps in
caching
o Temporal locality
o Spatial locality

1

Temporal locality Spatial locality

CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

© Vivek Kumar

Today’s Class
● Challenges with simple page table
● Multi-Level Page Table (MLPT)
● MLPT with TLB

2

CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

© Vivek Kumar

Paging

3 Kubiatowicz CS162 © UCB Spring 2023

● Recall, process address
space is not contiguous
o Inter-segment memory

is not contiguous
o Only intra-segment

virtual memory is
contiguous (the physical
memory may/may-not
be contiguous)

● Page table until now is
an array where the
length of the array will
be the total number of
VPN being used in the
process address space
o Not all the VPNs will be

used as the segments
are not contiguous
(there could be gaps
between them)

Challenge: Table size equal to
of pages in virtual memory!

CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

© Vivek Kumar

Overheads with the Linear Page Table
● Time overhead

o Covered in last lecture

● Space overhead (array based implementation)
o Single entry in PTE on x86 (32-bit) = 4 bytes
o Total number of pages = 232/4KB = 232/212

o Total number of unique VPNs = 220
o Total memory for one page table = 220 x 4 = 4MB
o If there are 100 processes, total memory requirement for page table = 400MB!
o On 64-bit: 252 unique VPNs x 8 bytes = 36 Exa-bytes!

4

Discussion for today

CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

© Vivek Kumar

Challenge: How to Structure a Page Table?
● Page Table is a map (function) from VPN to PPN

● Simple (linear) page table corresponds to a very large lookup
table
o VPN is index into table, each entry contains PPN

● What other map structures can you think of?
o Trees?
o Hash Tables?

5

Page
TableVirtual Address Physical Address

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

© Vivek Kumar

A Simple Fix
● How about using a page size bigger than 4KB?
● Let’s try using a 16KB page size in 32-bit addressing

o Total unique VPNs are 232/16KB = 218
o Space overhead

§ Single entry in PTE on x86 (32-bit) = 4 bytes
§ Total number of unique VPNs = 218
§ Total memory for one page table = 218 x 4 = 1MB
§ We are able to reduce single PT size by a factor of 4!

● Although we are able to alleviate the space overheads by
increasing the page size, but do you see any issues in this
approach?
o Internal fragmentation!

6

CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

© Vivek Kumar

Mapping Virtual to Physical Address
● Approaches

1. Virtual address is same as the physical address
2. Virtual address is not the same as physical address

a) Using base & bound for VA to PA mapping
b) Using segmentation for VA to PA mapping
c) Paging

a) Using Page Table (PT) in RAM and having a base register for PT
b) Using Page Table (PT) in RAM and having a base register for PT as well

as a TLB cache
c) Using Multi-level Page Table

7

CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

© Vivek Kumar

Reason for Large Page Table

8

● There are several invalid (“null”)
entries in an array-based
implementation of the page
table
o Not all indices are going to be

valid in the look up table
● We can reduce the size of the

page table if we can use a data
structure that can help in
removing the invalid “null”
entries inside the page table
o Multi-Level Page Table (MLPT)
o We can also combine paging

along with segmentation
§ We are skipping it in our

discussion as anyway
segmentation leads to
complexity as we have already
seen

CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

© Vivek Kumar

Multi-Level Page Table (MLPT)
● Idea-1

o Split the entire page table
into page size entries

o How many entries inside
each page size entries?
§ On x86 with 4KB page size,

there would be 1024 VPN
entries inside each page
size blocks (4KB/4bytes)

o Types of “Pages”
§ All invalid (“null”) VPNs
§ At least one valid VPN

o Guess what we can do next?
9

Page Table

Page size
(4KB)

Page size
(4KB)

Page size
(4KB)

Page Table

CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

© Vivek Kumar

Multi-Level Page Table (MLPT)
● Idea-2

o Create a Page Directory (PD)
§ Per-process array-based

data structure
§ Each index in PD points to a

page of page table

10

Page size
(4KB)

Page size
(4KB)

Page size
(4KB)

Page Table

Page Directory

Page
size

(4KB)

CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

© Vivek Kumar

Multi-Level Page Table (MLPT)
● Idea-3

o Don’t allocate a page of page table if
there is not a single valid entry inside it

o PD entry also stores this information
apart from the base address of the page
of a page table

● This example of MLPT is a two-level
page table

● The unused page table in MLPT can
easily be swapped to the disk
o Only the page directory and the page

table in use is needed to be on the
physical memory

● There could be more than two-levels
of page table!
o Out of scope of this course

11

Page size
(4KB)

Page size
(4KB)

Page Table

Page Directory

Page
size

(4KB)

CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

© Vivek Kumar

Two-Level Page Table in x86

12

● Virtual address (32-bit)
contains three different
entries (instead of two
that we saw earlier in
case of linear page
table)
o Page Directory index

(PDIndex)
§ Total entries 1024
§ Bits needed = 10

o Index into page table
corresponding to the
above entry inside
page directory
§ Total entries 1024
§ Bits needed = 10

o Offset to address in
the physical page

0

Virtual AddressOffsetPage TablePage
Directory

112131
VPN

CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

© Vivek Kumar

Two-Level Page Table in x86

13

● Control Register (CR3)
register (part of MMU)
stores the starting
address of the Page
Directory (PD)

● PD contains 1024 Page
Directory Entry (PDEs)
o Each PDE contains the

Page Frame Number and
a status bit

o Status=0 if there is not a
single valid entry in the
PFN, otherwise status =1
(valid PFN only if
status=1)

● Address of the PDE
associated with this VPN
o PDE = CR3 + PDIndex *

4 bytes
Page Directory

CR3

0

Virtual AddressOffsetPage TablePage
Directory

112131
VPN

1

2

Page size
(4KB)

CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

© Vivek Kumar

Two-Level Page Table in x86

14

● Page Table Entry
(PTE) can be now
found from the
PDE
o PTE = PDE +

(Page Table index
* 4 bytes)

0

Virtual AddressOffsetPage TablePage
Directory

112131

Page Directory

CR3

Page size
(4KB)

Page size
(4KB)

Page Table

VPN

3
1

2
4

Page size
(4KB)

CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

© Vivek Kumar

Two-Level Page Table in x86

15

● Physical Page Frame
Number (PFN) can be
found from the PTE

● The physical address
is obtained by adding
the “offset” into the
starting address of
PFN

● What would happen
when considering
TLB?
o None of these

complex lookups are
required if TLB
contains the VPN-
>PPN

Page Directory

CR3

Page size
(4KB)

Page size
(4KB)

Physical Memory
(Array of 4KB pages)

Pa
ge

 s
iz

e
(4

KB
)

Page Table

0

Virtual AddressOffsetPage TablePage
Directory

112131
VPN

3
1

2
4

5

6

Page size
(4KB)

CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

© Vivek Kumar

MLPT Along with TLB
● Look ups are

required only in
case of TLB misses

● Access latency
significantly low
when TLB hits
o See Lecture-18

16

…

TLB

CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

© Vivek Kumar

Memory Management in Intel x86

17

CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

© Vivek Kumar

Mapping Virtual to Physical Address
● Approaches

1. Virtual address is same as the physical address
2. Virtual address is not the same as physical address

a) Using base & bound for VA to PA mapping
b) Using segmentation for VA to PA mapping
c) Paging

a) Using Page Table (PT) in RAM and having a base register for PT
b) Using Page Table (PT) in RAM and having a base register for PT as well

as a TLB cache
c) Using Multi-level Page Table
d) Using Inverted Page Table

18

CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

© Vivek Kumar

Inverted Page Table
● Issues with MLPT

o Easy implementation but many page tables
● Inverted Page Table

o Size is independent of the virtual address
space, and is directly related to the amount of
physical memory
§ Each entry points to a page in the physical

memory
§ Each entry corresponds to the VPN (“p”) and

process (“pid”) that owns that page
§ The tuple (pid, p) inside a virtual address is

used as a hash key to find the entry in the
page table

o Single page table contains entries for all the
processes
§ Complex hash function!

o It is called as inverted page table, as total
entries is equal to the total number of PPN
§ In contrast, the page tables we have seen so

far (a.k.a. forward page tables) the entries
are according to the VPN

19

Virtual
address

Picture source: https://www.os-book.com/OS10/

CSE231: Operating Systems

Lecture 19: Multi-Level Page Table

© Vivek Kumar

Next Lecture
● Demand paging

o Last remaining topic in virtualization of memory

20

