Lecture 19: Multi-Level Page Table

Vivek Kumar
Computer Science and Engineering
IHIT Delhi
vivekk@iiitd.ac.in

E CSEZ231: Operating Systems

Last Lecture

\J T

Temporal locality Spatial locality

e

01 234567

001123
A | 1 I
4 567
0/1/23
4 567
Virtual Physical
Pages Pages

E CSEZ231: Operating Systems

Lecture 19: Multi-Level Page Table

T8 | [4->10 |[9->20 || 10->9 || 3->16 |
Cache
[0->13 |[1->14 || 2->5 || 3->16 |
page | [4->10 || 5->19 || 6->18 || 7->12 |
Tablein 'g 515 [9->20 |[20->9 |[11->6 |
Memoj
v | [2>8][13>3][14>a][15->1]
(DRAM' 0000000000000 000
Al L d L]
‘f' _‘f—' _‘f_] Iter=
BL | | | '] | %
01 23 45 67
ALl b e
\ﬁlﬁ \ﬁlﬁ \ﬁ'_/ Iter=x+
BL | | | | 1
01 2345 67
DL L L] “me
BL | | | | 2
01 2345 67

© Vivek Kumar

Time overheads with
page table access

o PT base address in
PTBR (1-cycle)

o Accessing PT index in
DRAM (several cycles)

Translation look aside
buffer (TLB)

e hardware cache per
PU or saving
%uently accessed
entries (part of
MMU

Locality helps in
caching

o Temporal locality
o Spatial locality

o wetsMueePegeTaoe
Today’s Class

® Challenges with simple page table
® Multi-Level Page Table (MLPT)
® MLPT with TLB

1D

Lecture 19: Multi-Level Page Table

P ag i n g Page Table

Virtual memory view 7 Physical memory view
1111 1111 11111 11101 [775, PhY ry

stack | ——>11110 11100 114 _
1111 0000 | StaCR 11101| null \

11100| null il
l 11011| null L2iolhs 110 0000

11001| null
1100 0000 11000| null

10111| null

10110(null
I 10101 null
10100(null
10011 null
10010| 10000 | — |
10001| 01111 > hean
10000/ 01110 > u
01111| null
01110| null
01101| null
01100| null
01011| 01101

heap
U

!

1000 0000

0111 000

0101 000

0100 0000
01010(01100

01001 01011
01000| 01010

00111 null —Code—oom 0000
00110| null
0000 0000 podre e 0000 0000

Recall, process address

space Is not contiguous

o Inter-segment memory
IS not contiguous

o Only intra-segment
virtual memory is
contiguous (the physical

memory may/may-not
be configuous)

Page table until now is
an array where the
length of the array will
be the total number of
VPN being used in the
process address space
o Not all the VPNs will be

used as the segments
are not contiguous

page # offset

i

[N ===

00001
00000

woo of Challenge: Table size equal to | (there could be gaps
of pages in virtual memory!

between them)

E CSE231: Operating Systems Kubiatowicz CS162 © UCB Spring 2023

o cweMuneeRaeTe
Overheads with the Linear Page Table

® Time overhead Discussion for today
o Covered in last lecture

® Space overhead (array based implementation)

Single entry in PTE on x86 (32-bit) = 4 bytes

Total number of pages = 232/4KB = 232/212

Total number of unique VPNs = 220

Total memory for one page table = 22°x 4 = 4MB

If there are 100 processes, total memory requirement for page table = 400MB!
On 64-bit: 2°2 unique VPNs x 8 bytes = 36 Exa-bytes!

O O O O O O

1D

Lecture 19: Multi-Level Page Table

Challenge: How to Structure a Page Table?
® Page Table is a map (function) from VPN to PPN

Virtual Address N Teee > Physical Address

® tSierr?pIe (linear) page table corresponds to a very large lookup
able

o VPN is index into table, each entry contains PPN

® \What other map structures can you think of?

o Trees?
o Hash Tables?

[E CSE231: Operating Systems Kubiatowicz CS162 © UCB Spring 2023

Lecture 19: Multi-Level Page Table

A Simple Fix
® How about using a page size bigger than 4KB?

® Let's try using a 16KB page size in 32-bit addressing
o Total unique VPNs are 23%/16KB = 218
o Space overhead
= Single entry in PTE on x86 (32-bit) = 4 bytes
= Total number of unique VPNs = 218

= Total memory for one page table = 2'8x 4 = 1MB
= We are able to reduce single PT size by a factor of 4!

® Although we are able to alleviate the space overheads by
Increasing the page size, but do you see any issues in this
approach?

o Internal fragmentation!

E CSE231: Operating Systems © Vivek Kumar

o weremureePaeTbe
Mapping Virtual to Physical Address

® Approaches

1. Virtual address is same as the physical address

2. Virtual address is not the same as physical address
a) Using base & bound for VA to PA mapping
b) Using segmentation for VA to PA mapping
c) Paging
a) Using Page Table (PT) in RAM and having a base register for PT

b) Using Page Table (PT) in RAM and having a base register for PT as well
as a TLB cache

c) Using Multi-level Page Table

1D

E CSEZ231: Operating Systems

null
null
null
null
null
null
null
null
null
null

null

null
null
null
null

null
null
null
null

Lecture 19: Multi-Level Page Table

Reason for Large Page Table

© Vivek Kumar

There are several invalid (“null”)
entries in an array-based
![mbpllementatlon of the page
able

o Not all indices are going to be
valid in the look up table

We can reduce the size of the
page table if we can use a data
structure that can help in
removing the invalid “null’
entries inside the page table

o) Multi-Level Page Table (MLPT)

o We can also combine paging
along with segmentation

. We are skipping it in our
discussion as anyway
segmentation leads to
complexity as we have already
seen

Multi-Level Page Table (MLPT)

® |dea-1

Page size o Split the entire page table
(4KB) Into page size entries

! o How many entries inside

each page size entries?
. = On x86 with 4KB page size,
B e there would be 1024 VPN
entries inside each page
size blocks (4KB/4bytes)
o Types of “Pages”
Pigi;‘fe = Allinvalid (“null”) VPNs
— = Atleast one valid VPN
Page Table Page Table o Guess what we can do next?

1D

Lecture 19: Multi-Level Page Table

Multi-Level Page Table (MLPT)

® |dea-2
Pézg&;i)ze o Create a Page Directory (PD)

= Per-process array-based

Page \ data structure

size
(4KB) = Each index in PD points to a
Page size page of page table
Page Directory (4KB)
Page size
(4KB)
Page Table

E CSE231: Operating Systems © Vivek Kumar 10

Lecture 19: Multi-Level Page Table

Multi-Level Page Table (MLPT)

Page size
(4KB)
Page
size
(4KB)
Page Directory
Page size
(4KB)
Page Table

E CSEZ231: Operating Systems

© Vivek Kumar

l[dea-3

o Don'’t allocate a page of page table if
there is not a single valid entry inside it

o PD entry also stores this information
aPart from the base address of the page
of a page table

This example of MLPT is a two-level
page table

The unused page table in MLPT can
easily be swapped to the disk

o Only the page directory and the page
table in use Is needed to be on the
physical memory

There could be more than two-levels
of page table!

o Out of scope of this course

11

Lecture 19: Multi-Level Page Table

Two-Level Page Table in x86

VPN
31 21 11

0

P .
pogeToble] ofier | virtual Address

E CSEZ231: Operating Systems

© Vivek Kumar

® Virtual address (32-bit)
contains three different
entries (instead of two
that we saw earlier in
case of linear page

table)

o Page Directory index
(PDIndex)
= Total entries 1024
. Bits needed = 10

o Index into page table
corresponding to the
above entry inside
page directory
= Total entries 1024
= Bits needed =10

o Offset to address in
the physical page

12

Lecture 19: Multi-Level Page Table

Two-Level Page Table in x86 |
VPN ® Control Register (CR3)

register (part of MMU)
stores the starting

1 21 11 0

Diesetory | P2 i dd f the P
Direct geTable Virtual Address aaaress o1 tne Fage
Diéctory | Pege Teble pidress of the

® PD contains 1024 Page
2 Directory Entry (PDEs

o Each PDE contains the
Page Frame Number and
a status bit

o Status=0 if there is not a
smﬁlle valid entry in the
1 PFN, otherwise status =1
(valid PFN only if

Page size status=1)

CR3 (4KB) ® Address of the PDE

associated with this VPN

Page Directory e EIBEt= CR3 + PDIndex *
ytes

E CSE231: Operating Systems © Vivek Kumar 13

Lecture 19: Multi-Level Page Table

Two-Level Page Table in x86

R valN ’ ; ® Page Table Entry
{1 2an b6 now

PDE
2 o PTE = PDE +
Page size (Page Table index
(4KB) * 4 bytes)

3 —>
Page si Page size
CR3 (4KB) (4KB)

Page Directory

Page Table
[E CSE231: Operating Systems © Vivek Kumar 14

Two-Level Page Table in x

VPN

Lecture 19: Multi-Level Page Table

1 21 11 0
Virtual Address

Page Directory

[E CSE231: Operating Systems

Page Table

Page size (4KB)

Physical Memory
(Array of 4KB pages)

© Vivek Kumar

86

Physical Page Frame
Number (PFN) can be
found from the PTE

The physical address
Is obtained by adding
the “offset” into the
starting address of
PFN

What would happen
when considering
TLB?

o None of these
complex lookups are
required if TLB
contains the VPN-
>PPN

15

Lecture 19: Multi-Level Page Table

MLPT Along with TLB

P : ® Look ups are
D?rgeitory I Page Table Offset Virtual Address

required only in
case of TLB misses

® Access latency
significantly low
when TLB hits

o See Lecture-18

Page size (4KB)

Physical Memory
(Array of 4KB pages)

E CSE231: Operating Systems © Vivek Kumar 16

Memory Management in Intel x86

Logical Address
(or Far Pointer)
Segment l
Selector Offset Linear Address
1 | Space
Global Descriptor : Linear Address Physical
Table (GDT) ——>| Dir | Table | Offset | Adﬁress
Space
Segment
Segment Page Table Page
Descriptor — | [_____ |\ || _ || || ["7
> ||| [T~~~ Page Directory >»| Phy. Addr.
<|—> Lin. Addr. — > Entry N I
- A Entry >
Segment_/4
Base Address
—— Page
}7 Segmentation I Paging I

1D

o weremureePaeTbe
Mapping Virtual to Physical Address

® Approaches

1. Virtual address is same as the physical address

2. Virtual address is not the same as physical address
a) Using base & bound for VA to PA mapping
b) Using segmentation for VA to PA mapping
c) Paging
a) Using Page Table (PT) in RAM and having a base register for PT

b) Using Page Table (PT) in RAM and having a base register for PT as well
as a TLB cache

c) Using Multi-level Page Table
d) Using Inverted Page Table

1D

Lecture 19: Multi-Level Page Table

Inverted Page Table
® Issues with MLPT
o Easy implementation but many page tables

® Inverted Page Table
o Size is independent of the virtual address

Virtual _ Sﬁac_e, and Is directly related to the amount of
address | 1 ggéfgg physical memory
: - physical . Each ent ints t in the physical
cPu {pid] p | d | |—J.—|i'—' bl m%cmoerg ry points to a page in the physica
. Each entry corresponds to the VPN (“p”) and

process (“pid”) that owns that page
}i . The tuple Wid p) inside a virtual address is

used as a hash key to find the entry in the
page table

Single page table contains entries for all the
processes

. Complex hash function!

o ltis called as inverted page table, as total
page table entries is equal to the total number of PPN

. In contrast, the page tables we have seen so
far (a.k.a. forward page tables) the entries
are according to the VPN

search l

pid |

ge)
O

Picture source: https.//www.os-book.com/OS10/

E CSE231: Operating Systems © Vivek Kumar 19

o cueteMitleelPageTale
Next Lecture

® Demand paging
o Last remaining topic in virtualization of memory

1D

