
CSE231: Operating Systems

Lecture 20: Demand Paging

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

Last Lecture ● Process
address space
is not
contiguous.
Hence, having a
linear page table
would lead to
huge space
overheads

● Increasing the
page size can
alleviate the
overhead, but it
would lead to
fragmentation

● Multi-Level
Page Table
(MLPT)

1

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

Today’s Class
● Demand paging
● Page replacement policies

o FIFO
o Random
o LRU

§ Implementing LRU

2

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

Migration of Pages across DRAM & DISK
● Modern programs require a lot of physical memory
● But they don’t use all the memory all of the time

o 90-10 rule: programs spend 90% of their time in 10% of their code
o Wasteful to require all of user’s code to be in memory

● Solution: use main memory as “cache” for disk

3

Secondary
Storage
(SSD/DISK)

O
n-C
hip

C
ache

Control

Datapath

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

pagingcaching

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

The Illusion of Infinite Memory
● Disk is larger than physical memory Þ

o In-use virtual memory can be bigger than physical memory
o Combined memory of running processes much larger than physical memory

§ More programs fit into memory, allowing more concurrency
● Principle: Transparent Level of Indirection (page table)

o Supports flexible placement of physical data
§ Data could be on disk or somewhere across network

o Variable location of data transparent to user program
§ Performance issue, not correctness issue

4 Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

Mapping Virtual to Physical Address
● Approaches

1. Virtual address is same as the physical address
2. Virtual address is not the same as physical address

a) Using base & bound for VA to PA mapping
b) Using segmentation for VA to PA mapping
c) Paging

a) Using Page Table (PT) in RAM and having a base register for PT
b) Using Page Table (PT) in RAM and having a base register for PT as well

as a TLB cache
c) Using Multi-level Page Table
d) Demand paging

6

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

Demand Paging
● It the mechanism to provide the illusion of infinite memory
● OS brings the pages into memory when it is accessed (i.e.,

on demand)
● PTE (Page Table Entry) makes demand paging

implementable using the Present bit (a single dedicated bit
in the PTE)
o P=Valid Þ Page in memory
o P=Not Valid Þ Page not in memory

8 Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

Handling Page Fault in Demand Paging

9 Kubiatowicz CS162 © UCB Spring 2023

● TLB miss happens for VA to PA mapping
● MMU reads present bit inside page table during VA

to PA translation
o Present bit in page table entry indicates if a page of a

process resides in memory or not
● If page present in memory, directly accessed,

otherwise generate page fault exception and move
into kernel mode

● OS fetches disk address of page and issues read to
disk
o OS keeps track of disk address

● OS context switches to another process
o Current process is blocked and cannot run

● When disk read completes, OS updates page table
of process, and marks it as ready

● When process is scheduled again the OS restarts
the instruction that caused page fault

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

Working Set Model

10

Time

M
em

or
y

(P
ag

es
)

As a program executes, it transitions through a sequence of “working sets”
consisting of varying sized subsets of the address space. If fewer pages remain

active over time then the OS may move those inactive pages to the disk
Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

When to Move Unused Pages to Disk?
● OS keeps some amount of DRAM always free by deciding

some upper cap
● Whenever the upper cap memory level is breached,

unused pages are moved out to disk
o OS uses a daemon process for carrying out this activity

● To help decide which pages are really “old”/”unused”,
there are several page replacement policies

11

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

Cost of Demand Paging
● Average Memory Access Time (AMAT)

o Memory Access Time (DRAM) + Probability of Page Fault (a miss)
x Page fault service time
§ MAT + PMiss x PFTime

● Example
o Memory access time = 200 nanoseconds
o Suppose p = Probability of page fault (miss)
o Average page-fault service time = 8 milliseconds
o Then, we can compute AMAT as follows:

 AMAT = 200ns + p x 8 ms = 200ns + p x 8,000,000ns
o If one access out of 1,000 causes a page fault, then EAT = 8.2 μs

12

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

Page Replacement Policy (1/2)
● Why do we care about Replacement Policy?

o Replacement is an issue with any cache
§ Recall, with demand paging we are using DRAM as a cache for

keeping pages
o Particularly important with pages

§ The cost of being wrong is high: must go to disk
§ Must keep important pages in memory, not toss them out

13 Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

Page Replacement Policy (2/2)
● FIFO

o Throw out oldest page
o Bad – might throw out heavily used pages instead of infrequently used

● Random
o Pick random page for every replacement
o Better than FIFO, but it goes by luck – no guarantees!

● MIN (Minimum) – a.k.a. the optimal policy
o Replace page that will be used furthest in the future

§ But we can’t really know future!

● LRU (Least Recently Used)
o Replace page that hasn’t been used for the longest time

§ We cannot know the future, but we can use the history to predict the future!
o Programs have locality, so if something not used for a while, unlikely to be used

in the near future

14 Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

FIFO Policy

15

● Suppose we have the following page reference stream:
o A B C A B D A D B C B

● Consider FIFO Page replacement:

● FIFO: 7 faults
● When referencing D, replacing A is bad choice, since we need A again

right away

C

B

A

D

C

B

A

BCBDADBACBA

3

2

1

Ref:
Page:

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

MIN Policy (= LRU in this Stream)
● Suppose we have the same reference stream:

o A B C A B D A D B C B
● Consider MIN Page replacement:

● MIN: 5 faults
o Where will D be brought in? Look for page not referenced farthest in future

● LRU will also function exactly the same for this reference stream
16

C

DC

B

A

BCBDADBACBA

3

2

1

Ref:
Page:

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

LRU May Perform Bad Also..
● Consider another reference stream: A B C D A B C D A B C D
● LRU Performs as follows (same as FIFO here):

o Every reference is a page fault!

17

D

C

B

A

D

C

B

A

D

C

B

A

CBADCBADCBA D

3

2

1

Ref:
Page:

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

Implementing LRU
● LRU can be implemented using a list

● Upon each use, remove that page from list and place at the head
o Least Recently Used (LRU) page is at the tail

● Problems with this scheme for paging?
o Need to know immediately whenever page is used so that can change

position in list
o Lots of work required at each memory access for this implementation

18

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

Approximating LRU: Clock Algorithm (1/7)
● Each physical pages

(used ones) are arranged
as circular linked list

19

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

● Each physical pages
(used ones) have a
dedicated bit stored in
RAM known as “use” bit
o Imagine OS maintaining

another array of “use” bits
inside DRAM, where each
index is a “use” bit for one
dedicated physical page

● Values could be 0 or 1
o Default value set to 0

20

0
0
0

0

0

0
0

0

0

0

Approximating LRU: Clock Algorithm (2/7)

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

● Whenever a page is
accessed (load/store of
some address inside this
page) by the process, the
hardware changes its
“use” bit to 1

21

1
0
0

1

1

0
1

0

0

0

AccessedAccessed

AccessedAccessed

AccessedAccessed

AccessedAccessed

1AccessedAccessed

Approximating LRU: Clock Algorithm (3/7)

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

● A clock hand (single hand)
points to any one of the
page in this list
o It doesn’t matter which one

● This single clock hand
advances to a next page
in the list only upon a
page fault for demand
paging

22

1
0
0

1

1

0
1

1

0

0

Approximating LRU: Clock Algorithm (4/7)

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

● At each page fault
(request for demand
paging), advance the
clock hand (not real time),
and check the use bit
o 1® used recently; set to 0

and move to next page

23

1
0
0

1

1

0
1

1

0

0

Approximating LRU: Clock Algorithm (5/7)

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

● At each page fault
(request for demand
paging), advance the
clock hand (not real time),
and check the use bit
o 0® selected candidate for

replacement

24

1
0
0

1

0

0
1

1

0

0

Approximating LRU: Clock Algorithm (6/7)

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

● The candidate page is
moved to the disk and
required page from the
disk is brought into the
newly created page slot
on the DRAM

● There are several
optimizations possible in
this simple clock algorithm

25

1
0
0

1

0

0
1

1

0

0

Approximating LRU: Clock Algorithm (7/7)

CSE231: Operating Systems

Lecture 20: Demand Paging

© Vivek Kumar

Next Lecture
● Introduction to multithreading

o Start of a new module – concurrency!
§ Total 3 lectures

26

