
CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

Last Lecture
● Race condition
● Producer consumer

problem

1

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

Today’s Class
● Properties of good locking algorithm
● The Dining philosophers
● Deadlock creation
● Deadlock avoidance
● Out of syllabus discussion

2

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

Properties of a Good Locking Algorithm
● Safety guarantee

o Mutual exclusion

● Progress guarantee
o Deadlock freedom
o Starvation freedom

3

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor
Programming” by Maurice Herlihy and Nir Shavit

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

Properties of a Good Locking Algorithm
● Mutual exclusion
● Deadlock freedom: system as a whole makes progress.

If some thread calls lock() and never returns, then other
threads must complete lock() and unlock() calls infinitely
often.

● Starvation freedom

4

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor
Programming” by Maurice Herlihy and Nir Shavit

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

Properties of a Good Locking Algorithm
● Mutual exclusion
● Deadlock freedom: system as a whole makes progress.

If some thread calls lock() and never returns, then other
threads must complete lock() and unlock() calls infinitely
often.

● Starvation freedom : A thread should not indefinitely hold
the lock for doing some big computation while other
threads keep waiting to get this lock

5

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor
Programming” by Maurice Herlihy and Nir Shavit

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

The Dining Philosophers
● “N” number of philosophers sit

on a round table
● One chopstick placed on the

table between each philosophers
● Philosophers alternate between

two states
o Thinking à they don’t use

chopsticks
o Eating à they have to pick the

chopsticks on their left and right
● Goal: the philosophers should

not go into indefinite waiting
stage for picking up the chostick
o Why there would be deadlock?

6

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

Money Transaction Between Accounts

7

● How to parallelize?
o The for-loop is similar to the for-

loop in parallel array sum we
discussed in last lecture

o Parallelize using multithreading

class Transfer {
 Account source, destination;
 double amount;
 void run() {
 source.debit(amount);
 destination.credit(amount);
 }
};

class Account {
 int id;
 double balance;
 void debit(double amount);
 void credit(double amount);
};

class Bank {
 void fund_transfer() {
 Accounts numAccounts[N];
 Transfer pending[TOTAL];
 for(int i=0; i<TOTAL; i++) {
 pending[i].run();
 }
 }
};

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

Money Transaction Between Accounts

8

● parallel_for
o Shorthand to denote parallelization

approach similar to parallel array
sum (as in your assignment-5)

● Do you see any issues?
o Race condition !!

class Transfer {
 Account source, destination;
 double amount;
 void run() {
 source.debit(amount);
 destination.credit(amount);
 }
};

class Account {
 int id;
 double balance;
 void debit(double amount);
 void credit(double amount);
};

class Bank {
 void fund_transfer() {
 Accounts numAccounts[N];
 Transfer pending[TOTAL];
 parallel_for(int i=0; i<TOTAL; i++) {
 pending[i].run();
 }
 }
};

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

Money Transaction Between Accounts

9

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
class Transfer {
 Account source, destination;
 double amount;
 void run() {
 pthread_mutex_lock(&mutex);
 source.debit(amount);
 destination.credit(amount);
 pthread_mutex_unlock(&mutex);
 }
};

● We can use mutex lock to
fix race condition

● Do we still have parallelism?

class Account {
 int id;
 double balance;
 void debit(double amount);
 void credit(double amount);
};

class Bank {
 void fund_transfer() {
 Accounts numAccounts[N];
 Transfer pending[TOTAL];
 parallel_for(int i=0; i<TOTAL; i++) {
 pending[i].run();
 }
 }
};

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

Money Transaction Between Accounts

10

class Account {
 int id;
 double balance;
 pthread_mutex_t m =
 PTHREAD_MUTEX_INITIALIZER;
 void debit(double amount);
 void credit(double amount);
};

● Is this correct?

class Bank {
 void fund_transfer() {
 Accounts numAccounts[N];
 Transfer pending[TOTAL];
 parallel_for(int i=0; i<TOTAL; i++) {
 pending[i].run();
 }
 }
};

class Transfer {
 Account source, destination;
 double amount;
 void run() {
 source.lock(); destination.lock();
 source.debit(amount);
 destination.credit(amount);
 destination.unlock(); source.unlock();
 }
};

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

Money Transaction Between Accounts

11

class Account {
 int id;
 double balance;
 pthread_mutex_t m =
 PTHREAD_MUTEX_INITIALIZER;
 void debit(double amount);
 void credit(double amount);
};

● Is this correct?
o DEADLOCK !!

class Bank {
 void fund_transfer() {
 Accounts numAccounts[N];
 Transfer pending[TOTAL];
 parallel_for(int i=0; i<TOTAL; i++) {
 pending[i].run();
 }
 }
};

class Transfer {
 Account source, destination;
 double amount;
 void run() {
 source.lock(); destination.lock();
 source.debit(amount);
 destination.credit(amount);
 destination.unlock(); source.unlock();
 }
};

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

Let’s Analyze Our Money Transaction

12

credit()

srcAccount destAccountt1 t2

credit() ?
transfer()

debit()

transfer()

debit()

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

Deadlock Avoidance
● Deadlock occurs when multiple threads need the

same locks but obtain them in different order
● Not so easy to avoid deadlocks
● It’s an active research area

13

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

Deadlock Avoidance
● Lock timeout

o Put a timeout on lock attempts
§ pthread_mutex_timedlock

● Lock ordering
o Ensure that all locks are taken in same order by any thread

§ Let’s try using it to fix our Bank Transaction program

14

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

Money Transaction Between Accounts

15

class Account {
 int id;
 double balance;
 pthread_mutex_t m =
 PTHREAD_MUTEX_INITIALIZER;
 void debit(double amount);
 void credit(double amount);
};

class Bank {
 void fund_transfer() {
 Accounts numAccounts[N];
 Transfer pending[TOTAL];
 parallel_for(int i=0; i<TOTAL; i++) {
 pending[i].run();
 }
 }
};

class Transfer {
 Account source, destination;
 double amount;
 void run() {
 Account a1, a2;
 if(source.id < destination.id) {
 a1 = source; a2 = destination;
 } else {
 a1 = destination; a2 = source;
 }
 a1.lock(); a2.lock();
 source.debit(amount);
 destination.credit(amount);
 a2.unlock(); a1.unlock();
 }
};

Deadlock resolved using lock ordering

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

Miscellaneous Topics (Out of Syllabus)
● Physical core v/s logical cores
● NUMA architecture
● Power consumption
● Challenges with multithreading on modern processors

16

Food For Thought

None of it will come in
your exams (Enjoy!)

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

Physical VS. Logical Cores
● Architectural state of a

core are the registers
(EBP, ESP, EIP, etc.)

● Logical cores of a
processor share
o Private cache
o Execution engine
o System bus interface

● If the execution of one of
the logical core blocks
(e.g., Core-0 waiting for a
memory fetch from the
DRAM) then the other
logical core (Core-2) can
resume its execution with
its own state

17

Private Cache

State

Core-0

Private Cache

State

Core-1

Private Cache

State

Core-0 & Core-2

Private Cache

State State State

Core-1 & Core-3

Dual-core processor
with hyperthreading

DISABLED

Dual-core processor
with hyperthreading

ENABLED

Execution
Engine

Execution
Engine

Execution
Engine

Execution
Engine

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

Non Uniform Memory Access (NUMA)
● Multiple processors (sockets) on

a single motherboard, each with
local DRAM(s)
o Connected together using fast

interconnect that also offers
cache coherency (e.g., Quick
Path Interconnect in Intel)

● One socket can directly access
memory of another socket
o Non-uniform memory access time

to local v/s remote memory
● Virtual page (VP) to physical

page (PP) mapping matters
o PP on local DRAM has faster

access v/s PP on remote DRAM
18

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

Component wise Power Consumption

19

● As per studies of power consumption in a data center
o 50% of incoming power is consumed by air-conditioning and power-delivery

subsystems, even before reaching the servers in a rack
o Rest 50% consumed by the servers, which can be further broken down into

the various elements as shown above
Source: https://www.intel.com/content/dam/support/us/en/documents/motherboards/server/sb/power_management_of_intel_architecture_servers.pdf

Modern
processors

provide
several

features in
userspace for

achieving
energy

efficiency

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

Challenges With Multithreading
● Challenging in achieving high productivity and high performance

in parallel programming over large number of cores
o Same program should run over a variety of multicore processors without

requiring any modifications (high productivity!)
§ One-to-one mapping between thread and core

• Using logical cores might not benefit in each program
o Threads should attempt to equally divide the total work (high

performance!)
§ If there is not enough parallelism then having one-to-one mapping between

thread and core may not benefit (avoiding oversubscribing)
§ Thread running on a core should have most of its data (physical pages)

allocated on the local DRAM (avoiding NUMA overheads)
§ Parallel programs should achieve optimal of performance and energy

utilization (achieving energy efficiency)

20

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

How to Deal With Those Challenges?

21

● Parallel programming model
o Use tasks instead of threads
o Tasks (async) are composed of

a function pointer and the
argument to the function
§ Much lightweight than threads

● Parallel runtime systems
o Performs dynamic load

balancing of tasks by mapping
tasks to threads based on their
current workload

o Provides several opportunities
for achieving high performance
and energy efficiency

CSE231: Operating Systems

Lecture 23: Deadlock Avoidance

© Vivek Kumar

Next Lecture
● Introduction to Filesystem
● Quiz-4

o Syllabus: Lectures 18-23

22

