Lecture 23: Deadlock Avoidance

Vivek Kumar
Computer Science and Engineering
IHIT Delhi
vivekk@iiitd.ac.in

E CSEZ231: Operating Systems

o lecweDedockAwidance
Last Lecture

int main(int argc, char *argv[]) {

#include <pthread.h>

#include <stdio.h> if (SIZE < 1024) {
#include <stdlib.h> }-P?eu-’v-t{!— array_sum(0, SIZE); .
int A[SIZE], result=0; else)
void array_sum(int low, int high) { pthread_t tid[NTHREADS]; . I {ace COnd |t|0n
int sum = 0; thread_args args[NTHREADS];
for (int i=low; i<high; i++) { int chunk = SIZE/NTHREADS;
sum += A[i]; for (int i=0; i<NTHREADS; i++) {
} args[i].low=i*chunk; args[i].high=(i+1)*chunk; . P d
—_— pthread_create(&tid[i], ro u Ce r CO n S u I I le r

} NULL,

thread_func,

typedef struct { (void*) &args[il); bI

pedef =t - : ropiem
int high; Race condition !!! For (int i=0; i<NTHREADS; i++) {

_—

thread_join(tid[i1);
} thread_args; A _join(ti [1].)

——
void *thread_func(void *ptr) { }

thread_args * t = ((thread_args *) ptr); }) .
—ii— A ray_sum(t->low, t->high); printf(”Total Sum is %d\n", result);

return NULL; return 0;

dE 7
1.
2
3
4
5
6
7

pthread_mutex_lock(&mutex);

while(task_queue_size() == 0)
pthread_cond_wait(&cond, &mutex);

}

task = pop_task_queue();

pthread_mutex_unlock(&mutex);

execute_task (task):

pthread_mutex_lock(&mutex);

int queue_size = task_queue_size():

push_task_queue(&task);

if(queue_size == 0) {
pthread_cond_broadcast(&cond);

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
int A[SIZE], result=0;
pthread_mutex_t m=PTHREAD_MUTEX_INITIALIZER;
void array_sum(int low, int high) {
int sum = 0;
for (int i=low; i<high; i++) {
sum += A[i];
1
pthread_mutex_Tlock(&m); T

Noohrwp=

pthread_mutex_unlock(&mutex);

conditionis
fixed using
mutual

result += sum;
pthread_mutex_unlock(&m) ;

X ILISICIT]

Consumer(s) Producer

1D

o ecwemDeexmwmewe
Today’s Class

® Properties of good locking algorithm
® The Dining philosophers
® Deadlock creation

® Deadlock avoidance

o

Out of syllabus discussion

1D

Lecture 23: Deadlock Avoidance

Properties of a Good Locking Algorithm

® Safety guarantee
o Mutual exclusion

® Progress guarantee
o Deadlock freedom
o Starvation freedom

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor
Programming” by Maurice Herlihy and Nir Shavit

E CSE231: Operating Systems © Vivek Kumar

Lecture 23: Deadlock Avoidance

Properties of a Good Locking Algorithm

® Mutual exclusion

® Deadlock freedom: system as a whole makes progress.
If some thread calls lock() and never returns, then other
threads must complete lock() and unlock() calls infinitely

often.
® Starvation freedom

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor
Programming” by Maurice Herlihy and Nir Shavit

E CSE231: Operating Systems © Vivek Kumar

Lecture 23: Deadlock Avoidance

Properties of a Good Locking Algorithm

® Mutual exclusion

® Deadlock freedom: system as a whole makes progress.
If some thread calls lock() and never returns, then other
threads must complete lock() and unlock() calls infinitely

often.

® Starvation freedom : A thread should not indefinitely hold
the lock for doing some big computation while other
threads keep waiting to get this lock

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor
Programming” by Maurice Herlihy and Nir Shavit

E CSE231: Operating Systems © Vivek Kumar

The Dining Philosophers

f2

f3

f4

1D

“N” number of philosophers sit
on a round table

One chopstick placed on the
table between each philosophers

Philosophers alternate between
two states

o Thinking - they don'’t use
chopsticks

o Eating 2 they have to pick the
chopsticks on their left and right

Goal: the philosophers should
not go into indefinite waiting
stage for picking up the chostick

o Why there would be deadlock?

Lecture 23: Deadlock Avoidance

Money Transaction Between Accounts

class Account {
int id;
double balance;
void debit(double amount);
void credit(double amount);

class Transfer {

Account source, destination;
double amount;

void run() {
source.debit(amount);

}s destination.credit(amount);
}
7 |
class Bank { l;7
void fund_transfer() {
Accounts numAccounts[N]; i)
Transfer pending[TOTAL]; ® HOW tO para”elllze.) .
for(int i=@; i<TOTAL; i++) { o The for-loop is similar to the for-
pending[i].run(); loop in parallel array sum we
_J discussed in last lecture
¥
}; 7 o Parallelize using multithreading

E CSE231: Operating Systems © Vivek Kumar 7

o esmDstevednes
Money Transaction Between Accounts

class Account { class Transfer {
int id; Account source, destination;
double balance; double amount;
void debit(double amount); void run() {
void credit(double amount); source.debit(amount);
}s destination.credit(amount);
}
7 oL
class Bank { | 7
void fund_transfer() {
Accounts numAccounts[N]; o parallel_for
ULFELIEREL e g (VAL] o Shorthand to denote parallelization
parallel_for(int i=0; i<TOTAL; i++) { approach similar to parallel array
pending[i].run(); sum (as in your assignment-5)
}

® Do you see any issues?

) o Race condition !!

}s 7
D

o esmDstevednes
Money Transaction Between Accounts

class Account { pthread mutex t m = PTHREAD MUTEX_ INITIALIZER;
int id; class Transfer {
double balance; Account source, destination;
void debit(double amount); double amount;
void credit(double amount); void run() {
}s pthread_mutex_lock(&mutex);
source.debit(amount);
4;7 destination.credit(amount);
pthread_mutex_unlock(&mutex);
class Bank { }
void fund_transfer() { }; 5;7
Accounts numAccounts[N];
Transfer pending[TOTAL]; ® \We can use mutex lock to

parallel_for(int i=0; i<TOTAL; i++) {
pending[i].run();
}

fix race condition

) ® Do we still have parallelism?

}s 7
D

o esmDstevednes
Money Transaction Between Accounts

class Account { class Transfer {
int id; Account source, destination;
double balance; double amount;
pthread mutex t m = void run() {
PTHREAD_MUTEX_INITIALIZER; source.lock(); destination.lock();
void debit(double amount); source.debit(amount);
void credit(double amount); destination.credit(amount);
}s 4;7 destination.unlock(); source.unlock();
class Bank { };}
void fund_transfer() { 5;7
Accounts numAccounts[N]; -
Transfer pending[TOTAL]; ® Is this correct?

parallel_for(int i=0; i<TOTAL; i++) {
pending[i].run();
}
}

}s 7
11D

Lecture 23: Deadlock Avoidance

Money Transaction Between Accounts

class Account {
int id;
double balance;

class Transfer

.lock();
void debit(doub

void credit(dou

};

class Bank { 2
void fund_transj
Accounts numAg¢
Transfer pend
parallel for(
pending[i].

ce.unlock();

}
}
}s

© CanStockPhoto.com - csp50107200

“Ir) CSE231: Operating Systems © Vivek Kumar 11

Let’s Analyze Our Money Transaction

1 12

srcAccount destAccount

transfer() transfer()

1D

Lecture 23: Deadlock Avoidance

Deadlock Avoidance

® Deadlock occurs when multiple threads need the
same locks but obtain them in different order

® Not so easy to avoid deadlocks
® It's an active research area

[E CSE231: Operating Systems © Vivek Kumar

13

o lecwe2sDeadockmvaidance
Deadlock Avoidance

® Lock timeout
o Put atimeout on lock attempts
= pthread mutex_timedlock
® Lock ordering

o Ensure that all locks are taken in same order by any thread
= Let’s try using it to fix our Bank Transaction program

1D

o esmDstevednes
Money Transaction Between Accounts

};

class Account {

int id;

double balance;

pthread mutex t m =
PTHREAD MUTEX INITIALIZER;

void debit(double amount);

void credit(double amount);

cl

ass Bank {
void fund_transfer() {
Accounts numAccounts[N];
Transfer pending[TOTAL];
parallel_for(int i=0; i<TOTAL; i++) {
pending[i].run();

class Transfer {
Account source, destination;
double amount;
void run() {

Account al, a2;

if(source.id < destination.id) {

al = source; a2 = destination;
} else {
al = destination; a2 = source;

}
al.lock(); a2.lock();

source.debit(amount),;
destination.credit(amount);
a2.unlock(); al.unlock();

}
};

Deadlock resolved using lock ordering

o ecwemDeexmwmewe
Miscellaneous Topics (Out of Syllabus)

® Physical core v/s logical cores

® NUMA architecture None of it will come in

: our exams (Enjoy!
® Power consumption Y (Enjoy!)

® Challenges with multithreading on modern processors

Food For Thought

1D

Physical VS. Logical Cores

state |

Private Cache

Core-0

| state |

Private Cache

Core-1

Private Cache

Core-0 & Core-2

Private Cache

Core-1 & Core-3

Dual-core processor
with hyperthreading

DISABLED

Dual-core processor
with hyperthreading

ENABLED

Architectural state of a
core are the reqisters
(EBP, ESP, EIP; etc.)

Logical cores of a
processor share

o Private cache
o Execution engine
o System bus interface

If the execution of one of
the logical core blocks
(e.g., Core-0 waiting for a
memory fetch from the
DRAM) then the other
logical ‘core (Core-2) can
resume its execution with
Its own state

Lecture 23: Deadlock Avoidance

Non Uniform Memory Access (NUMA)

DRAM DRAM DRAM DBAM’ r DRAM DRAM
i . ¥ M T
: = ! |
: i :
] 1]

On chip memory
controller

On chiplmemory

.....................................

E CSE231: Operating Systems

On chip fhemory

® Multiple processors (sockets) on
a single motherboard each with
local DRAM(s)

o Connected to%ether using fast
interconnect that also offers
cache coherency (e.g., Quick
Path Interconnect in Tntel)

® One socket can directly access
memory of another socket
o Non-uniform memory access time
to local v/s remote memory

® V|rtuallga e (VP) to physical
page (PP mapplng matters

o PP on local DRAM has faster
access v/s PP on remote DRAM

© Vivek Kumar 18

Component wise Power Consumption

Processors Modern
provide
DC/DC Losses 10% several
features in
AC/DC Losses 25% userspace for

/ ~ achieving
energy

Memory o
efficiency

11%

o
Planar pcj prives Standby
3% 6% 2%

® As per studies of power consumption in a data center

o 50% of incoming power is consumed by air-conditioning and power-delivery
subsystems, even before reaching the servers in a rack

o Rest 50% consumed by the servers, which can be further broken down into
the various elements as shown above

Source: https://www.intel.com/content/dam/support/us/en/documents/motherboards/server/sb/power_management_of _intel_architecture_servers.pdf

1D

Lecture 23: Deadlock Avoidance

Challenges With Multithreading

® Challenging in achieving high productivity and high performance
In parallel programming over large number of cores
o Same program should run over a variety of multicore processors without
requiring any modifications (high productivity!)
= One-to-one mapping between thread and core
. Using logical cores might not benefit in each program

o Threads should attempt to equally divide the total work (high
performance!)

- If there is not enough parallelism then having one-to-one mapping between
thread and core may not benefit (avoiding oversubscribing)

= Thread running on a core should have most of its data (physical pages)
allocated on the local DRAM (avoiding NUMA overheads)

» Parallel programs should achieve optimal of performance and energy
utilization (achieving energy efficiency)

E CSE231: Operating Systems © Vivek Kumar 20

Lecture 23: Deadlock Avoidance

How to Deal With Those Challenges?

R ® Parallel programming model
fnion (oo] o Use tasks instead of threads
async recursive(low, mid); i i
cecursive(od, high); | e Gph o Tasks (async) are composed of
o - DO 08¢ a function pointer and the
. i HE | argument to the function
4 00 ©O . = Much lightweight than threads
2. High 3.E | o g o e v Wy .
Performance Efficloncy ® @ ®e o Parallel runtime systems
Runtime Systems \HOH B N/ o Performs dynamic load |
Operating System N B]I balancm%of tasks by mapping
== [(=1 tasks to threads based on their
s —— o/ current workload
=5 =5 =0 =5 =5 =5 \ I/ o Provides several opportunities
=8 =8 =5 =5 [=n = for achieving high performance
Supscamputr and energy efficiency
"E CSE231: Operating Systems © Vivek Kumar 21

o lecweDedockAwidance
Next Lecture

® Introduction to Filesystem

® Quiz-4
o Syllabus: Lectures 18-23

1D

