
CSE231: Operating Systems

Lecture 25: File System
Implementation

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE231: Operating Systems

Lecture 25: File System Implementation

Last Lecture

● Prototype of a simple IO device
● Using interrupts to avoid polling overheads
● Using DMA to avoid wastage of CPU cycles

during copying of data
● Paging with memory mapped files

1

CSE231: Operating Systems

Lecture 25: File System Implementation

Today’s Class
● Design of FAT and FFS file systems
● Buffer cache
● Dealing with system crashes

2

CSE231: Operating Systems

Lecture 25: File System Implementation

File System
● User’s view of File:

o Durable Data
Structures

● System’s view of File
(system call interface):
o Collection of Bytes

(UNIX)
o Oblivious to

specific data
structures user
wants to store

● System’s view of file
(inside OS):
o File is a collection

of blocks
3

OS uses File System for
virtualization of IO devices

Kubiatowicz CS162 © UCB Spring 2023

Hardware
Devices

Focus of today’s
lecture

CSE231: Operating Systems

Lecture 25: File System Implementation

Building a File System
● File organization

o Organize files by names with directories

● Protection
o Provide access restriction

● Fast access
o Access to disk is several orders of magnitude slower than DRAM

access

● Reliability
o Keep files intact despite crashes, hardware failures, etc.

4 Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 25: File System Implementation

What Does the File System Needs?
● Track free disk blocks

o Need to know where to put newly written data
● Track which blocks contain data for which files

o Need to know where to read a file from
● Track files in a directory

o Find list of file's blocks given its name
● Where do we maintain all of this?

o Somewhere on disk

5 Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 25: File System Implementation

Basic File System Components

6

File path

Directory
Structure

File Index
Structure

File number

…

Data blocks

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 25: File System Implementation

Components of a File System

● Open performs Name Resolution
o Translates pathname into a “file number”

§ Used as an “index” to locate the blocks
o Creates a file descriptor in PCB within kernel
o Returns a file descriptor (int) to user process

● Read and Write operation on the file number
o Use file number as an “index” to locate the blocks on disk

7

file name
directory

file number
offset index structure

Storage block

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 25: File System Implementation

FAT (File Allocation Table)
● FAT is a file system architecture which is really simple and

robust
o Used in several places (MS-DOS, Windows (sometimes) and External

drives)
● It uses linked allocation, where each file is a linked list of blocks

on disk
o These blocks could be scattered any where on the disk

● What is benefit of linked allocation v/s contiguous allocation of
blocks on disk?
o Each file occupying a set of contiguous blocks on the disk is really

simple to implement but doesn’t allow file growth
o To avoid file growth, extra space must be allocated upfront leading to

space wastage (disk fragmentation)

8 Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 25: File System Implementation

FAT: Reading File (1/3)
● Example: read file 31,

block 2 (4KB blocks)

9

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

memory

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 25: File System Implementation

FAT: Reading File (2/3)
● Example: read file 31,

block 2
1. Index into FAT with file num
o Simple way to store blocks

of a file: Linked List
structure

o File number is just the first
block

o One entry in table per data
block

o FAT contains pointer to the
next block for each entry
(or special END value)

10

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory

1

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 25: File System Implementation

FAT: Reading File (3/3)
● Example: read file 31,

block 2
1. Index into FAT with file num
2. Follow linked list to block 2
3. Read block from disk into

mem

11

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory

File 31, Block 2

1

2

3

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 25: File System Implementation

FAT: Expanding File (1/4)
● Entries in table

corresponding to free block
have value 0

● Must scan through FAT to
find free space

12

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

Free

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 25: File System Implementation

FAT: Expanding File (2/4)
● Find a new free block

13

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

Free

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 25: File System Implementation

FAT: Expanding File (3/4)
● Add new content of the file

at Block 3 corresponding to
this FAT entry

14

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

Free

File 31, Block 3

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 25: File System Implementation

FAT: Expanding File (4/4)
● Link the new FAT entry with

its predecessor

15

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

Free

File 31, Block 3

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 25: File System Implementation

Storing the FAT
● Saved to disk when system

is shut down
● Copied into memory when

OS is running
o Makes accesses, updates

fast
o Otherwise lots of random

reads to locate the blocks of
a file

● When drive is formatted,
make all FAT entries 0

16

File 31, Block 3

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

File 63, Block 1

File 63, Block 063:

31:

File 1 number

File 2 number

1. FAT can only store a
maximum file size of 4 GB

as the file size is
represented by a 32-bit int

Kubiatowicz CS162 © UCB Spring 2023

2. FAT has no
access rights

CSE231: Operating Systems

Lecture 25: File System Implementation

Inodes in Unix
● File number is index into a set of inode arrays

o Suppose an Inode occupies 128 bytes
§ Byte offset of Inode-1000 = 128x1000 bytes

● Inode maintains a multi-level tree structure to find storage
blocks for files
o Great for little and large files
o Asymmetric tree with fixed sized blocks

● Original inode format appeared in Berkeley Standard
Distribution (BSD) Unix
o Still used in modern Linux filesystems (e.g., ext4)

18 Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 25: File System Implementation

Inode Structure (1/5)

19

Inode Array

File
Metadata

Direct
Pointers

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indrect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

... ...

...

......

...
...

......... ...
...

...

...
Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 25: File System Implementation

Inode Structure (2/5)

20

Inode Array

File
Metadata

Direct
Pointers

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indrect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

... ...

...

......

...
...

......... ...
...

...

...

Array on disk at
a well-known
block number

Reserved when
disk is formatted

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 25: File System Implementation

Inode Structure (3/5)

21

Inode Array

File
Metadata

Direct
Pointers

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indrect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

... ...

...

......

...
...

......... ...
...

...

...

File permissions,
File size,
Time stamp, etc.

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 25: File System Implementation

Inode Structure (4/5)

22

Inode Array

File
Metadata

Direct
Pointers

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indrect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

... ...

...

......

...
...

......... ...
...

...

...

Direct pointers

4kB blocks Þ sufficient
for files up to 48KB

Small files:
Level-1 has
12 pointers
direct to data
blocks (files
up to 48KB)

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 25: File System Implementation

Inode Structure (5/5)

23

Inode Array

File
Metadata

Direct
Pointers

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indrect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

... ...

...

......

...
...

......... ...
...

...

...

Indirect pointers
 - point to a disk block
 containing only pointers
 - 4 kB blocks => 1024 ptrs
 => 4 MB @ level 2
 => 4 GB @ level 3
 => 4 TB @ level 4

48 KB

+4 MB

+4 GB

+4 TB

Large files:
2,3,4 level
indirect
pointers

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 25: File System Implementation

Buffer Cache
● Kernel must

copy disk
blocks to main
memory
(Buffer Cache)
to access their
contents and
write them
back when
modified

24 Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 25: File System Implementation

Where are we as of now
● CSE231 Post Conditions

1. Students are able to create a Unix shell with
complete clarity about process creation and
process execution

2. Students are able to write multi- threaded
applications with synchronization primitives and
ability to analyze effects of concurrency on
process execution and correctness

3. Students are able to analyze the impact of OS
concepts, e.g. virtual memory, concurrency, on
program execution and ability to fine-tune the
program to run efficiently on a given OS

4. Students are able to demonstrate deeper
understanding of the Unix-like OSes and kernel
programming

33

CSE231: Operating Systems

Lecture 25: File System Implementation

Next Lecture
● End semester review

34

