Lecture 25: File System
Implementation

Vivek Kumar
Computer Science and Engineering
IHIT Delhi
vivekk@iiitd.ac.in

Lecture 25: File System Implementation

Last Lecture

While (STATUS == BUSY)

; // wait until device is not busy

Write data to DATA register
Write command to COMMAND register

(starts the device and executes the command)

While (STATUS == BUSY)

CPU
Disk

CPU
DMA
Disk

; // wait until device is done with your request

11111

Prototype of a simple IO device
Using interrupts to avoid polling overheads

Using DMA to avoid wastage of CPU cycles schedul

during copying of data
Paging with memory mapped files

E CSEZ231: Operating Systems

Registers

Status

Command

Micro-controller (CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

Figure 36.3: A Canonical Device

Process ,virtual address

inst

ction F——

/

\

MMU

exception

Opérating System
e Fault Handler

GB('S’ File

page fault

I/Create PT entries.
/' for mapped region

Data Interface

Internals

bhysical address
PT frame#
offset =3
\
\
\
\
\
AN =
\

as “backed” by file

o lcweSFlesmemmpeneniaton
Today’s Class

® Design of FAT and FFS file systems
® Buffer cache

® Dealing with system crashes

1D

o lewesFleSslmmplemenaton
File System | |
® User’s view of File:

I/0 API and Memory o Durable Data
sysealls Address_______. Structures
_ Logical Index, ® System’s view of File
File System Typically 4 KB (system call interface):
--- o Collection of Bytes
OS uses File System for (UN |X)
virtualization of 10 devices o ODblivious to

specific data
structures user

Focus of today’s
lecture

e wants to store
°' ® System’s view of file
(inside OS):
Hardware <» : . .
Seviene o | o File is a collection
of blocks

Lecture 25: File System Implementation

Building a File System

® File organization
o Organize files by names with directories

® Protection
o Provide access restriction

® Fast access

o Access to disk is several orders of magnitude slower than DRAM
access

® Reliability

o Keep files intact despite crashes, hardware failures, etc.

E CSE231: Operating Systems Kubiatowicz CS162 © UCB Spring 2023

Lecture 25: File System Implementation

What Does the File System Needs?

® Track free disk blocks
o Need to know where to put newly written data

® Irack which blocks contain data for which files
o Need to know where to read a file from

® Track files in a directory
o Find list of file's blocks given its name

® \Vhere do we maintain all of this?
o Somewhere on disk

E CSE231: Operating Systems Kubiatowicz CS162 © UCB Spring 2023

Basic File System Components
File path

Directory
Structure

File Index
Structure

File number

- Data blocks

D

Lecture 25: File System Implementation

Components of a File System

file name file number Storage block
directory oOffset index structure

® Open performs Name Resolution
o Translates pathname into a “file number”
» Used as an “index” to locate the blocks
o Creates a file descriptor in PCB within kernel
o Returns a file descriptor (int) to user process

® Read and Write operation on the file number
o Use file number as an “index” to locate the blocks on disk

E CSE231: Operating Systems Kubiatowicz CS162 © UCB Spring 2023

Lecture 25: File System Implementation

FAT (File Allocation Table)

® FAT is a file system architecture which is really simple and
robust

o éJs_ed isw several places (MS-DOS, Windows (sometimes) and External
rives

o It ug_esklinked allocation, where each file is a linked list of blocks
on dis
o These blocks could be scattered any where on the disk

® \What is benefit of linked allocation v/s contiguous allocation of
blocks on disk?

o Each file occupying a set of contiguous blocks on the disk is really
simple to implement but doesn’t allow file growth

o To avoid file growth, extra space must be allocated upfront leading to
space wastage (disk fragmentation)

E CSE231: Operating Systems Kubiatowicz CS162 © UCB Spring 2023

FAT: Reading File (1/3)
® Example: read file 31, E

block 2 (4KB blocks)

N-1: N-1:

memory

1D

FAT: Reading File (2/3)

® Example: read file 31,
block 2

1. Index into FAT with file num

o Simple way to store blocks
of a file: Linked List

structure

o File number is just the first
block

o One entry in table per data
block

o FAT contains pointer to the
next block for each entry
(or special END value)

1D

File number

®

0:

S

memory

N-1:

FAT

0:

N-1:

Disk Blocks

FAT: Reading File (3/3) 0
Flleégnber \ .

D

® Example: read file 31,
block 2

1.
2.
3.

Index into FAT with file num
Follow linked list to block 2

Read block from disk into
mem

{ : } -
-
ﬁ

memory

FAT

0:

Disk Blocks

mm

FAT: Expanding File (1/4)

® Entries in table

corresponding to free block
have value @

® Must scan through FAT to

D

find free space

0:

Free

N-1:

FAT

0:

N-1:

Disk Blocks

mm

FAT: Expanding File (2/4) .” .

® Find a new free block

S

Free

N-1: N-1:

Disk Blocks

-
o

1D

FAT: Expanding File (3/4) .~ .

® Add new content of the file

at Block 3 corresponding to
this FAT entry

Free

N-1: N-1:

1D

FAT: Expanding File (4/4) .” . ™"

® Link the new FAT entry with
Its predecessor

Free

+ |

N-1: N-1:

1D

Lecture 25: File System Implementation

StOring the FAT OFAT N Disk Blocks

File | number

® Saved to disk when system 3 © File 31, Block 0
IS shut down File 31, Block |
® Copied into memory when] | e 63 Block!

OS is running
o Makes accesses, updates

fast - File 31, Block 3
. . , File 63, Block 0
o Otherwise lots of random 63:
reads to locate the blocks of | P
a file File 2 number ile 31, Bloc

® \Whendrive is formatted’ 1. FAT can only store a N-1: N-1I:
make all FAT entries O maximum file size of 4 GB

as the file size is 2. FAT has no -
represented by a 32-bit int access rights

E CSE231: Operating Systems Kubiatowicz CS162 © UCB Spring 2023 16

Lecture 25: File System Implementation

Inodes In Unix

® File number is index into a set of inode arrays
o Suppose an Inode occupies 128 bytes
= Byte offset of Inode-1000 = 128x1000 bytes
® Inode maintains a multi-level tree structure to find storage

blocks for files

o Great for little and large files
o Asymmetric tree with fixed sized blocks

® Original inode format appeared in Berkeley Standard
Distribution (BSD) Unix

o Still used in modern Linux filesystems (e.g., ext4)

E CSE231: Operating Systems Kubiatowicz CS162 © UCB Spring 2023

18

Inode Structure (1/5)

D

Inode Array

File”
Metadata

Direct
Pointers

Indirect i’ointer
Dbl. Indirect Ptr.
Tripl. Indrect Ptr:

Triple Double

Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks

Inode

Inode Structure (2/5)

Inode Array Triple Double
'ndire=t Indirect Indirect Data

Al’l'ay on dlSk Al Blocks Blocks Blocks
a well-known
- block number

Al

Reserved when

R . - i
disk is formatted /D\Di

bI. Indirect Ptr. - S . "
ripl. Indrect Ptr: *_D\;:\D\

I —

- O

J

]

D

Inode Structure (3/5)

D

Inode Array

File permissions,
File size,
Time stamp, etc.

Indirect i’ointer
Dbl. Indirect Ptr.

Triple Double

Indirect Indirect Indirect Data

Blocks Blocks Blocks Blocks

Tripl. Indrect Ptr:

Lecture 25: File System Implementation

Inode Structure (4/5)

Direct pointers

4kB blocks = sufficient
for files up to 48KB

Small files:
Level-1 has
12 pointers
direct to data
blocks (files
up to 48KB)

E CSEZ231: Operating Systems

Triple Double
Indirect Indirect Indirect Data
/ Inode Blocks Blocks Blocks Blocks

File”
Metadata
Direct \
Pointers I:l
Indirect Pointer I:'
Dbl. Indirect Ptr. N N ‘D
Tripl. Indrect Ptr. ‘—D\D_,:%\D

Kubiatowicz CS162 © UCB Spring 2023

22

Lecture 25: File System Implementation

Inode Structure (5/5)

Indirect pointers
- point to a disk block
containing only pointers

- 4 kB blocks => 1024 ptrs | e
=>4 MB @ level 2 fetadata
=>4 GB @ level 3

=>4 TB @ level 4

Large files:
2,34 level
iIndirect
pointers

E CSEZ231: Operating Systems

Triple Double
Indirect Indirect Indirect Data
/ Inode Blocks Blocks Blocks Blocks

Direct
Pointers

Indirect i’ointer
Dbl. Indirect Pt
Tripl. Indrect Ptr

Kubiatowicz CS162 © UCB Spring 2023 23

Buffer Cache

l/O APl and
syscalls

File System
(Block Based) |

Variable-Size Buffer

Buffer Cache

Memory Address

Logical Index,
Typically 4 KB

(Block Based)

Hardware
Devices

1D

Physical Index,
512B or 4KB

HDD

Not block-sized
or block-aligned
access

Reuse of inodes,

indirect blocks,
data blocks

Speed up access
to file system
path and data

Apparent speed
and flexibility is

greater because
of Buffer Cache

® Kernel must
copy disk
blocks to main
memory
(Buffer Cache)
to access their
contents and

write them
back when

modified

- lecwre2sFleSysemmplementaton
Where are we as of now

® CSE231 Post Conditions

1. Students are able to create a Unix shell with
complete clarity about process creation and
process execution

2. Students are able to write multi- threaded
applications with synchronization primitives and
ability to analyze effects of concurrency on
process execution and correctness

3. Students are able to analyze the impact of OS
concepts, e.g. virtual memory, concurrency, on
program execution and ability to fine-tune the
program to run efficiently on a given OS

4. Students are able to demonstrate deeper
understanding of the Unix-like OSes and kernel
programming

1D

. lecwesFleSyemimplemeniaton
Next Lecture

® End semester review

1D

