Lecture 26: End Semester Review

Vivek Kumar
Computer Science and Engineering
IHIT Delhi
vivekk@iiitd.ac.in

E CSEZ231: Operating Systems

Lecture 26: End Semester Review

Fragmentation ® Segments of memory can
become unusable due to

y VIV VI I IIIIIIY ‘ IIIIIIIIIIIIIIIIIIIIIIH||H the reSUIt Of allocation
é‘ 7, |||||||||| m;%/|9|\v1 00) SCheme
250 bytes of free space ® [wo types of fragmentation
o External fragmentation
= Memory remains unallocated
100 bytes 100 bytes o Internal fragmentation
/7, yIIZIIIIIZIIT] EELLEEE LT T AdA u MemO iS a”Ocated but
// % ‘ malloc(80) HHH m@lg\ 100) unusegly
y T T IIIII I 7 TOERERERERRRE it | VIV

= Fixed allocation sizes
250 bytes of free space

[E CSE231: Operating Systems © Vivek Kumar 1

Lecture 26: End Semester Review

Malloc using Implicit List ® Each memory

Header—T s oo block has a
| header/footer
data ® Blocks connected
Foot _ as linked list
ooter= size |a=0,1
® Block splitting
2 2|2 24 4|2 2 ,
~—— — — ~— during malloc
P o E.g., p=malloc(1)
N~ N\ N\
L - U NG ® Block coalescing
P during free
N \—
2 22 2[4 a2 2 o E.qg., free(p)
\/V\/
p

E CSE231: Operating Systems © Vivek Kumar 2

Lecture 26: End Semester Review

Address Spaces

® Using some mapping technique to translate the address seen by
the user to the actual address on the RAM gives two different

views of addresses
o Virtual address space (as seen by the process)
o Physical address space (as seen by the OS depending on DRAM size)

® \irtual address space: Set of N = 2" virtual addresses
{0,1, 2,3, ..., N-1}

® Physical address space: Set of M = 2™ physical addresses
{0,1,2,3, ..., M-1}

[E CSEZ231: Operating Systems Source: COMP321, Alan L. Cox, Rice University

Lecture 26: End Semester Review

I ® Segmentation is easy to implement but it has
Paglng major drawbacks because segments could
have variable sized memory allocation
o Can lead to external fragmentation

o To allocate space for a new process, seg%ments of
some other process has to be swapped 1o the disk
(huge overhead)

® Paging solves both the above issues b
dividing the available memory into small and
fixed size blocks (pages)

o The memory can then be viewed as an array of
fixed sized Slots
® Default page size on Linux is 4096 bytes (4KB)

Physical Memory ® ?;OE%IZ/%IJ(%biere of 2pz'ﬁlges In 32-bit addressing mode

Total number of es in 64-bit addressing mode
© s SHAKB Lo 2529 J

E CSE231: Operating Systems © Vivek Kumar 10

Lecture 26: End Semester Review

Segmentation Along with Paging

Paging

E CSEZ231: Operating Systems

® Segmentation cannot be disabled in x86

processors, but address translation is complex
using the segmentation-based approach

o Hence, to simplify the address translation, segment
registers are set to have the same base (0) and
bound (232-1) values (Lecture #16)

Segmentation converts the logical address to
linear address, which is then converted into
virtual address to support paging

However, as the base and bound of each
segment registers maps to entire 232 memory
size (4GB), logical address will be the same as
virtual address

© Vivek Kumar 11

Lecture 26: End Semester Review

Two Components of a Virtual Address

® Dedicate few bits to identify VPN and the remaining bits to
identify the offset into that VPN

® How many bits required to represent a VPN for pages of N
bytes in a virtual memory of M bytes (total M/N pages)?
o M=4GB (232) and N=4KB
= Pages = 232/4096 = 220 and bits required to identify 220 pages are 20

\ A J
| |

VPN in 220 pages Byte offset in a page of
size 212 bytes (4096)

32-bit addressing with page size of 4KB

E CSE231: Operating Systems © Vivek Kumar 12

Lecture 26: End Semester Review

A Simple Page Table in Action
0x00 @ 0x00
OOO(I 0000 0x04

0000 0100

0x04

2[7 | 2000010 0x08

T *QH

0x08 0000 1000 Page 0x0C
. Table
Virtual
8-bit addressing mode 0x10
Memory Page size is 4 bytes

Total number of VPN = 28/4 = 26 Physical
6 bits required to represent VPN
2 bits for specifying offset Memory

i

J

k
|

€
f
g
b
d
b
C
d

E CSE231: Operating Systems Kubiatowicz CS162 © UCB Spring 2023

Lecture 26: End Semester Review

A Simple Page Table in Action (Using TLB)

0x00 0x00 .
0001 0000 0x04 |
0x04 0000 110
0000 010 oxos H
0x08 -+—> 0x0C [T
:
Virtual g
o] 4 Physical |b
Offset 3] .
IS Memory|

[E CSE231: Operating Systems Kubiatowicz CS162© UCB Spring 2023

14

Lecture 26: End Semester Review

P ag i n g Page Table

Virtual memory view 7 Physical memory view
1111 1111 11111 11101 [775, PhY ry

stack | ——>11110 11100 114 _
1111 0000 | StaCR 11101| null \

11100| null il
l 11011| null L2iolhs 110 0000

11001| null
1100 0000 11000| null

10111| null

10110(null
I 10101 null
10100(null
10011 null
10010 10000 |— |
10001| 01111 > hean
10000(01110 > u
01111| null
01110| null
01101| null
01100| null
01011| 01101

heap
U

!

1000 0000

0111 000

0101 000

0100 0000
01010(01100

01001 01011
01000| 01010

00111 null —Code—oom 0000
00110| null
0000 0000 podre e 0000 0000

Recall, process address

space Is not contiguous

o Inter-segment memory
IS not contiguous

o Only intra-segment
virtual memory is
contiguous (the physical

memory may/may-not
be configuous)

Page table until now is
an array where the
length of the array will
be the total number of
VPN being used in the
process address space
o Not all the VPNs will be

used as the segments
are not contiguous

page # offset

i

[N ===

00001
00000

woo of Challenge: Table size equal to | (there could be gaps
of pages in virtual memory!

between them)

E CSE231: Operating Systems Kubiatowicz CS162 © UCB Spring 2023

15

Lecture 26: End Semester Review

VPN

Two-Level Page Table in x8

3

3 —>
Page si
CR3 (4KB)

Page Directory

Page Table

E CSEZ231: Operating Systems

1 21 11 0
virtual Address

Page size (4KB)

Physical Memory o
(Array of 4KB pages)

© Vivek Kumar

6

VA stores page directory
index, page table index,
and address offset in PP

CRa3 register stores the
startinB_address of the
Page Directory

Each PDE contains the
Page Frame Number and
a status bit

o Status=0 if there is not a
smﬁlle valid entry in the

PFN, otherwise status =1
(valid PFN only if status=1)

Page Table Entlr:}/ (PTE) is
found from the PDE

Physical Page Frame
Number (PEN) is found
from the PTE

16

Lecture 26: End Semester Review

Demand Paging

page is on
backing store

operating
system

- \E
@ P

reference

load M |« [i —

®

restart
instruction

page table

free frame |«

® ®

reset page bring in
table missing page

physical

memory

E CSEZ231: Operating Systems

® It the mechanism to provide the
illusion of infinite memory

® OS keeps some amount of DRAM
always free by deciding some
upper cap
o Whenever the upper cap memory

level is breached, unused pages are
moved out to disk

® OS brings the f\)/la?es into memory
back into DRAM from disk when it

IS accessed
o Happens during page fault

° Eﬁ{pl':ferr%aeﬁetg bqg rl'}?.rr']% ?ﬁg IIggesent

o P=Valid = Page in memory, PTE
points at physical page

o P=Not Valid = Page not in memory

Kubiatowicz CS162 © UCB Spring 2023 17

Lecture 26: End Semester Review

IPC Within a Multicore Processor

® Inter-process communication in shared memory
o Transfer of control from user space to kernel space and vice-versa

® Complicated IPC mechanism for communication

® OS has to reserve extra memory / resources

o Separate heap, stack, .text segment, etc. for each process
o Same copy of .text segment in each process

® Separate page table for each process
® Cost of IPC may exceed the cost of actual computation!

E CSE231: Operating Systems © Vivek Kumar 19

o sewemEwSemewRwes
Array Sum using Pthread

int main(int argc, char *argv[]) {
#include <pthread.h> int result;
#include <stdio.h> if (SIZE < 1024) {
#include <stdlib.h> result = array_sum(0, SIZE);
int A[SIZE]; // Initialization code elided } else {
int array_sum(int low, int high) { pthread_t tid[NTHREADS];
int sum = O; thread_args args[NTHREADS];
for (int i=low; i<high; i++) { int chunk = SIZE/NTHREADS;
sum += A[i]; for (int i=0; i<NTHREADS; i++) {
3 args[i].low=i*chunk; args[i].high=(i+1)*chunk;
return sum; pthread_create(&tid[i],
} NULL,
thread_func,
typedef struct { (void*) &args[il);
int low; }
int mh: for (int i=0; 1<NTHREADS; i++) {
’ . pthread_join(tid[i] , NULL);
} thread args; result += args[i].sum;
void *thread_func(void *ptr) { ¥
thread_args * t = ((thread_args *) ptr); ¥
t->sum = array_sum(t->low, t->high); printf(”Total Sum is %d\n", result);
return NULL; return O;
} 47 } 7

1D

Lecture 26: End Semester Review

Producer Consumer using Pthreads

®pthread cond wait
causes the current

1. pthread_mutex_lock(&mutex); 1. pthread_mutex_lock(&mutex); I I

2. while(task_queue_size() == 0) 2. int queue_size = task_queue_size(); th read to rel I nq U ISh
3. pthread_cond_wait(&cond, &mutex); 3. push_task_queue(&task): the CPU and Wa|t

4 } 4. if(queue_size == 0) { "

5. task = pop_task_queue(): 5. pthread_cond_broadcast(&cond); u ntll d nOthe r .t h read
6. pthread_mutex_unlock(&mutex); 6. } INVO keS the Slgnal or
7. execute_task (task); 7.

pthread_mutex_unlock(&mutex); t ne b ro adcast

® Upon call for wait, the

thread releases
ownership of the
mutex and waits until

Consumer(s) Producer a_nother thread_ _
signals the waiting
threads

E CSE231: Operating Systems © Vivek Kumar 21

Lecture 26: End Semester Review

Deadlock

® Deadlock occurs
when multiple

class Transfer {
Account A, B threads need the
int amount; same locks but
obtain them in
. lock I .
void runQ) { ock) 1 oK) different order
A.lock(); AN >L_B o It could be
B.lock(); avoided by using
A.debit(amount); lock ordering
B.credit(amount); lock() T2 @2@ = Ensure that all
A.unlock(); B |- > A locks are taken
B.unlock(); In same order
1 by any thread
}

E CSE231: Operating Systems © Vivek Kumar 22

File Allocation Table (FAT) .
File number \ N

D

memory

N-1:

FAT

Disk Blocks

e

N-1:

Inode Structure

D

Large files:
2,3,4 level
iIndirect
pointers

Inode Array

File”
Metadata

Direct
Pointers

Indirect i’ointer
Dbl. Indirect Ptr.

Triple Double
Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks

Inode

Tripl. Indrect Ptr:

| hope you enjoyed the course..

All the best for your exams !

