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Fragmentation ● Segments of memory can 
become unusable due to 
the result of allocation 
scheme

● Two types of fragmentation
o External fragmentation

§ Memory remains unallocated
o Internal fragmentation

§ Memory is allocated but 
unused

§ Fixed allocation sizes
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Malloc using Implicit List ● Each memory 
block has a 
header/footer

● Blocks connected 
as linked list

● Block splitting 
during malloc
o E.g., p=malloc(1)

● Block coalescing 
during free
o E.g., free(p)
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Address Spaces
● Using some mapping technique to translate the address seen by 

the user to the actual address on the RAM gives two different 
views of addresses
o Virtual address space (as seen by the process)
o Physical address space (as seen by the OS depending on DRAM size)

● Virtual address space: Set of N = 2n virtual addresses
  {0, 1, 2, 3, …, N-1}

● Physical address space: Set of M = 2m physical addresses
  {0, 1, 2, 3, …, M-1}

3 Source: COMP321, Alan L. Cox,  Rice University
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Logical Address to Linear Address
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Paging ● Segmentation is easy to implement but it has 
major drawbacks because segments could 
have variable sized memory allocation
o Can lead to external fragmentation 
o To allocate space for a new process, segments of 

some other process has to be swapped to the disk 
(huge overhead)

● Paging solves both the above issues by 
dividing the available memory into small and 
fixed size blocks (pages)
o The memory can then be viewed as an array of 

fixed sized slots
● Default page size on Linux is 4096 bytes (4KB)

o Total number of pages in 32-bit addressing mode 
is 232/4KB, i.e., 220

o Total number of pages in 64-bit addressing mode 
is 264/4KB, i.e., 252
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Segmentation Along with Paging
● Segmentation cannot be disabled in x86 

processors, but address translation is complex 
using the segmentation-based approach
o Hence, to simplify the address translation, segment 

registers are set to have the same base (0) and 
bound (232-1) values (Lecture #16)

● Segmentation converts the logical address to 
linear address, which is then converted into 
virtual address to support paging

● However, as the base and bound of each 
segment registers maps to entire 232 memory 
size (4GB), logical address will be the same as 
virtual address
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Two Components of a Virtual Address
● Dedicate few bits to identify VPN and the remaining bits to 

identify the offset into that VPN
● How many bits required to represent a VPN for pages of N 

bytes in a virtual memory of M bytes (total M/N pages)?
o M=4GB (232) and N=4KB

§ Pages = 232/4096 = 220 and bits required to identify 220 pages are 20

12 

12 bits20 bits

VPN in 220 pages Byte offset in a page of 
size 212 bytes (4096)

32-bit addressing with page size of 4KB
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A Simple Page Table in Action
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• 8-bit addressing mode
• Page size is 4 bytes
• Total number of VPN = 28/4 = 26

• 6 bits required to represent VPN
• 2 bits for specifying offset

PTBR
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A Simple Page Table in Action (Using TLB)
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Paging

15 Kubiatowicz CS162 © UCB Spring 2023

● Recall, process address 
space is not contiguous
o Inter-segment memory 

is not contiguous
o Only intra-segment 

virtual memory is 
contiguous (the physical 
memory may/may-not 
be contiguous)

● Page table until now is 
an array where the 
length of the array will 
be the total number of 
VPN being used in the 
process address space
o Not all the VPNs will be 

used as the segments 
are not contiguous 
(there could be gaps 
between them)

Challenge: Table size equal to 
# of pages in virtual memory!
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Two-Level Page Table in x86
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● VA stores page directory 
index, page table index, 
and address offset in PP

● CR3 register stores the 
starting address of the 
Page Directory

● Each PDE contains the 
Page Frame Number and 
a status bit
o Status=0 if there is not a 

single valid entry in the 
PFN, otherwise status =1 
(valid PFN only if status=1)

● Page Table Entry (PTE) is 
found from the PDE

● Physical Page Frame 
Number (PFN) is found 
from the PTEPage Directory
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Demand Paging

17 Kubiatowicz CS162 © UCB Spring 2023

● It the mechanism to provide the 
illusion of infinite memory

● OS keeps some amount of DRAM 
always free by deciding some 
upper cap
o Whenever the upper cap memory 

level is breached, unused pages are 
moved out to disk

● OS brings the pages into memory 
back into DRAM from disk when it 
is accessed
o Happens during page fault

● PTE makes demand paging 
implementable using the Present 
bit
o P=Valid Þ Page in memory, PTE 

points at physical page
o P=Not Valid Þ Page not in memory
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IPC Within a Multicore Processor
● Inter-process communication in shared memory

o Transfer of control from user space to kernel space and vice-versa

● Complicated IPC mechanism for communication
● OS has to reserve extra memory / resources

o Separate heap, stack, .text segment, etc. for each process
o Same copy of .text segment in each process

● Separate page table for each process
● Cost of IPC may exceed the cost of actual computation!

19 
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Array Sum using Pthread 
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#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
int A[SIZE]; // Initialization code elided
int array_sum(int low, int high) { 
  int sum = 0;
  for (int i=low; i<high; i++) { 
    sum += A[i];
  }
  return sum;
}

typedef struct {
  int low;
  int high;
  int sum;
} thread_args;

void *thread_func(void *ptr) {
  thread_args * t = ((thread_args *) ptr);
  t->sum = array_sum(t->low, t->high);
  return NULL;
}

int main(int argc, char *argv[]) {
  int result;
  if (SIZE < 1024) {
 result = array_sum(0, SIZE);
  } else {
    pthread_t tid[NTHREADS]; 
    thread_args args[NTHREADS];
    int chunk = SIZE/NTHREADS;
    for (int i=0; i<NTHREADS; i++) {
        args[i].low=i*chunk; args[i].high=(i+1)*chunk;
        pthread_create(&tid[i], 
                        NULL, 
                        thread_func, 
                        (void*) &args[i]);
    }
    for (int i=0; i<NTHREADS; i++) {
        pthread_join(tid[i] , NULL);
        result += args[i].sum;
    }
  }
  printf(”Total Sum is %d\n", result);
  return 0;
}
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Producer Consumer using Pthreads

1. pthread_mutex_lock(&mutex);
2. while(task_queue_size() == 0) 
3.   pthread_cond_wait(&cond, &mutex);
4. }
5. task = pop_task_queue();
6. pthread_mutex_unlock(&mutex);
7. execute_task (task); 

Consumer(s) Producer

1. pthread_mutex_lock(&mutex);
2. int queue_size = task_queue_size();
3. push_task_queue(&task);
4. if(queue_size == 0) { 
5.   pthread_cond_broadcast(&cond);
6. }
7. pthread_mutex_unlock(&mutex);

●pthread_cond_wait
causes the current 
thread to relinquish 
the CPU and wait 
until another thread 
invokes the signal or 
the broadcast

●Upon call for wait, the 
thread releases 
ownership of the 
mutex and waits until 
another thread 
signals the waiting 
threads
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Deadlock ● Deadlock occurs 
when multiple 
threads need the 
same locks but 
obtain them in 
different order
o It could be 

avoided by using 
lock ordering
§ Ensure that all 

locks are taken 
in same order 
by any thread

22 

class Transfer {
    Account A, B; 
    int amount;

    void run() {
       A.lock();
       B.lock();
       A.debit(amount);
       B.credit(amount);
       A.unlock();
       B.unlock();
    }
}



CSE231: Operating Systems

Lecture 26: End Semester Review

© Vivek Kumar

File Allocation Table (FAT)
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Inode Structure
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I hope you enjoyed the course..

All the best for your exams !
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