
CSE231: Operating Systems

Lecture 26: End Semester Review

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE231: Operating Systems

Lecture 26: End Semester Review

© Vivek Kumar

Fragmentation ● Segments of memory can
become unusable due to
the result of allocation
scheme

● Two types of fragmentation
o External fragmentation

§ Memory remains unallocated
o Internal fragmentation

§ Memory is allocated but
unused

§ Fixed allocation sizes

1

malloc(100) malloc(100) malloc(100)

250 bytes of free space

malloc(50) malloc(80) malloc(100)

250 bytes of free space

100 bytes 100 bytes

CSE231: Operating Systems

Lecture 26: End Semester Review

© Vivek Kumar

Malloc using Implicit List ● Each memory
block has a
header/footer

● Blocks connected
as linked list

● Block splitting
during malloc
o E.g., p=malloc(1)

● Block coalescing
during free
o E.g., free(p)

2

p

p

p

CSE231: Operating Systems

Lecture 26: End Semester Review

© Vivek Kumar

Address Spaces
● Using some mapping technique to translate the address seen by

the user to the actual address on the RAM gives two different
views of addresses
o Virtual address space (as seen by the process)
o Physical address space (as seen by the OS depending on DRAM size)

● Virtual address space: Set of N = 2n virtual addresses
 {0, 1, 2, 3, …, N-1}

● Physical address space: Set of M = 2m physical addresses
 {0, 1, 2, 3, …, M-1}

3 Source: COMP321, Alan L. Cox, Rice University

CSE231: Operating Systems

Lecture 26: End Semester Review

© Vivek Kumar

Logical Address to Linear Address

4

CSE231: Operating Systems

Lecture 26: End Semester Review

© Vivek Kumar

Paging ● Segmentation is easy to implement but it has
major drawbacks because segments could
have variable sized memory allocation
o Can lead to external fragmentation
o To allocate space for a new process, segments of

some other process has to be swapped to the disk
(huge overhead)

● Paging solves both the above issues by
dividing the available memory into small and
fixed size blocks (pages)
o The memory can then be viewed as an array of

fixed sized slots
● Default page size on Linux is 4096 bytes (4KB)

o Total number of pages in 32-bit addressing mode
is 232/4KB, i.e., 220

o Total number of pages in 64-bit addressing mode
is 264/4KB, i.e., 252

10

Page #0
Page #1
Page #2
Page #3
Page #4
Page #5
Page #6
Page #7

Physical Memory

CSE231: Operating Systems

Lecture 26: End Semester Review

© Vivek Kumar

Segmentation Along with Paging
● Segmentation cannot be disabled in x86

processors, but address translation is complex
using the segmentation-based approach
o Hence, to simplify the address translation, segment

registers are set to have the same base (0) and
bound (232-1) values (Lecture #16)

● Segmentation converts the logical address to
linear address, which is then converted into
virtual address to support paging

● However, as the base and bound of each
segment registers maps to entire 232 memory
size (4GB), logical address will be the same as
virtual address

11

Logical Address

Linear Address

Virtual Address

Physical Address

Segmentation

Paging

CSE231: Operating Systems

Lecture 26: End Semester Review

© Vivek Kumar

Two Components of a Virtual Address
● Dedicate few bits to identify VPN and the remaining bits to

identify the offset into that VPN
● How many bits required to represent a VPN for pages of N

bytes in a virtual memory of M bytes (total M/N pages)?
o M=4GB (232) and N=4KB

§ Pages = 232/4096 = 220 and bits required to identify 220 pages are 20

12

12 bits20 bits

VPN in 220 pages Byte offset in a page of
size 212 bytes (4096)

32-bit addressing with page size of 4KB

CSE231: Operating Systems

Lecture 26: End Semester Review

© Vivek Kumar

A Simple Page Table in Action

13

a
b
c
d
e
f
g
h
i
j
k
l

0x00

0x04

0x08

Virtual
Memory

0x00

i
j
k
l

0x04

0x08

e
f
g
h

0x0C

a
b
c
d

0x10
Physical
Memory

4
3
1

Page
Table

0

1

2

0000 0000
0001 0000

0000 0100
0000 1100

0000 1000

0000 0100

Kubiatowicz CS162 © UCB Spring 2023

• 8-bit addressing mode
• Page size is 4 bytes
• Total number of VPN = 28/4 = 26

• 6 bits required to represent VPN
• 2 bits for specifying offset

PTBR

CSE231: Operating Systems

Lecture 26: End Semester Review

© Vivek Kumar

A Simple Page Table in Action (Using TLB)

14

0
1

4
3

…

TLB

2 1
OffsetVPN

PTBR

CSE231: Operating Systems

Lecture 26: End Semester Review

© Vivek Kumar

Paging

15 Kubiatowicz CS162 © UCB Spring 2023

● Recall, process address
space is not contiguous
o Inter-segment memory

is not contiguous
o Only intra-segment

virtual memory is
contiguous (the physical
memory may/may-not
be contiguous)

● Page table until now is
an array where the
length of the array will
be the total number of
VPN being used in the
process address space
o Not all the VPNs will be

used as the segments
are not contiguous
(there could be gaps
between them)

Challenge: Table size equal to
of pages in virtual memory!

CSE231: Operating Systems

Lecture 26: End Semester Review

© Vivek Kumar

Two-Level Page Table in x86

16

● VA stores page directory
index, page table index,
and address offset in PP

● CR3 register stores the
starting address of the
Page Directory

● Each PDE contains the
Page Frame Number and
a status bit
o Status=0 if there is not a

single valid entry in the
PFN, otherwise status =1
(valid PFN only if status=1)

● Page Table Entry (PTE) is
found from the PDE

● Physical Page Frame
Number (PFN) is found
from the PTEPage Directory

Page size
(4KB)

Page size
(4KB)

Page Table

CR3

Physical Memory
(Array of 4KB pages)

Pa
ge

 s
iz

e
(4

KB
)

0

Virtual AddressOffsetPage TablePage
Directory

112131
VPN

3
1

2
4

5

6

Page size
(4KB)

CSE231: Operating Systems

Lecture 26: End Semester Review

© Vivek Kumar

Demand Paging

17 Kubiatowicz CS162 © UCB Spring 2023

● It the mechanism to provide the
illusion of infinite memory

● OS keeps some amount of DRAM
always free by deciding some
upper cap
o Whenever the upper cap memory

level is breached, unused pages are
moved out to disk

● OS brings the pages into memory
back into DRAM from disk when it
is accessed
o Happens during page fault

● PTE makes demand paging
implementable using the Present
bit
o P=Valid Þ Page in memory, PTE

points at physical page
o P=Not Valid Þ Page not in memory

CSE231: Operating Systems

Lecture 26: End Semester Review

© Vivek Kumar

IPC Within a Multicore Processor
● Inter-process communication in shared memory

o Transfer of control from user space to kernel space and vice-versa

● Complicated IPC mechanism for communication
● OS has to reserve extra memory / resources

o Separate heap, stack, .text segment, etc. for each process
o Same copy of .text segment in each process

● Separate page table for each process
● Cost of IPC may exceed the cost of actual computation!

19

CSE231: Operating Systems

Lecture 26: End Semester Review

© Vivek Kumar

Array Sum using Pthread

20

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
int A[SIZE]; // Initialization code elided
int array_sum(int low, int high) {
 int sum = 0;
 for (int i=low; i<high; i++) {
 sum += A[i];
 }
 return sum;
}

typedef struct {
 int low;
 int high;
 int sum;
} thread_args;

void *thread_func(void *ptr) {
 thread_args * t = ((thread_args *) ptr);
 t->sum = array_sum(t->low, t->high);
 return NULL;
}

int main(int argc, char *argv[]) {
 int result;
 if (SIZE < 1024) {
 result = array_sum(0, SIZE);
 } else {
 pthread_t tid[NTHREADS];
 thread_args args[NTHREADS];
 int chunk = SIZE/NTHREADS;
 for (int i=0; i<NTHREADS; i++) {
 args[i].low=i*chunk; args[i].high=(i+1)*chunk;
 pthread_create(&tid[i],
 NULL,
 thread_func,
 (void*) &args[i]);
 }
 for (int i=0; i<NTHREADS; i++) {
 pthread_join(tid[i] , NULL);
 result += args[i].sum;
 }
 }
 printf(”Total Sum is %d\n", result);
 return 0;
}

CSE231: Operating Systems

Lecture 26: End Semester Review

© Vivek Kumar 21

Producer Consumer using Pthreads

1. pthread_mutex_lock(&mutex);
2. while(task_queue_size() == 0)
3. pthread_cond_wait(&cond, &mutex);
4. }
5. task = pop_task_queue();
6. pthread_mutex_unlock(&mutex);
7. execute_task (task);

Consumer(s) Producer

1. pthread_mutex_lock(&mutex);
2. int queue_size = task_queue_size();
3. push_task_queue(&task);
4. if(queue_size == 0) {
5. pthread_cond_broadcast(&cond);
6. }
7. pthread_mutex_unlock(&mutex);

●pthread_cond_wait
causes the current
thread to relinquish
the CPU and wait
until another thread
invokes the signal or
the broadcast

●Upon call for wait, the
thread releases
ownership of the
mutex and waits until
another thread
signals the waiting
threads

CSE231: Operating Systems

Lecture 26: End Semester Review

© Vivek Kumar

Deadlock ● Deadlock occurs
when multiple
threads need the
same locks but
obtain them in
different order
o It could be

avoided by using
lock ordering
§ Ensure that all

locks are taken
in same order
by any thread

22

class Transfer {
 Account A, B;
 int amount;

 void run() {
 A.lock();
 B.lock();
 A.debit(amount);
 B.credit(amount);
 A.unlock();
 B.unlock();
 }
}

CSE231: Operating Systems

Lecture 26: End Semester Review

© Vivek Kumar

File Allocation Table (FAT)

23

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory

CSE231: Operating Systems

Lecture 26: End Semester Review

© Vivek Kumar

Inode Structure

24

Inode Array

File
Metadata

Direct
Pointers

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indrect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

... ...

...

......

...
...

......... ...
...

...

...

48 KB

+4 MB

+4 GB

+4 TB

Large files:
2,3,4 level
indirect
pointers

Kubiatowicz CS162 © UCB Spring 2023

CSE231: Operating Systems

Lecture 26: End Semester Review

© Vivek Kumar

I hope you enjoyed the course..

All the best for your exams !

25

