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Today’s Lecture

=>® Processor technology trend
® Thread operations

® Tasks based parallel programming model
o Functional Parallelism

Tasks-based parallel programming model and its underlying
runtime system would be referred throughout in this course
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Moore's law (1964)

o  Area of transistors halves roughly every two years
" |.e., Total transistors on processor chip gets
doubled roughly every two years
Dennard scaling (1974)

o  Power for fixed chip are remains almost constant as
transistors become smaller

No more free lunch!
o Thermal wall hit around 2004

o  Power is proportional to cube of frequency

" It restricts frequency growth, but opens up the
multicore era
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Adding More Cores Improves performance?

® Computation is just part of the
picture

® Memory latency and bandwidth

o CPU rates have increased 4x as
fast as memory over last decade

o Bridge speed gap using memory 10’000
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T
Parallelism within a Single Core

® Instruction level parallelism (Free Parallelism)

Decode

1




Free Lunch is Over!

® Industrial and commercial
users of parallel computing

o BigData, Databases, Data
instructions m|n|ng

. l" l | |_.- o Artificial intelligence
o QOil exploration
. S o Web search engines, web
based business services
(Facebook, Twitter, etc.)
- "' l | l"'- o Medical imaging and
diagnosis

_.'|'l ' |—o- o Financial and economic
IN 3 2 1 mOdelllng

o Advanced graphics and
virtual reality

o Collaborative work
environment
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Thread — A Lightweight Process
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® Processes are heavyweight

o Personal address space (allocated
memory)

o Communication across process always
requires help from Operating System

® Threads are lightweight

o Share resources inside the parent process
(code, data and files)
. Easy to communicate across sibling threads!

o They have their own personal stack (local
variables, caller-callee relationship between

function)
. Each thread is assigned a different job in the
program

® A process can have one or more threads
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Advantages of Multithreading

® Responsiveness

o Even if part of program is blocked or performing lengthy operation,
multithreading allows the program to continue

® Economical resource sharing

o Threads share memory and resources of their parent process
which allows multiple tasks to be performed simultaneously inside
the process

® Ultilization of multicores
o Easily scale on modern multicore processors
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Amdahl's Law

® Gives an estimate of maximum expected improvement S
to an overall system when only part of the system F¢ is
improved by a factor F,

Entire System

Time = Ts1 Time = TS2
Part of the system that CANNOT be improved Part of the system that CAN be improved
| - R
Speedup using P processes = Improvement
Ts1+ Tp
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Thread Creation and Join Operations

® Creation
o std::thread T(/* Pass a lambda function */ [=]() {
S1();
});
S2();

o Choose the correct option
= S1 & S2 will execute in parallel
=  S1 & S2 may execute in parallel
= S2 will execute before S1

® Join
o T.join();
= |tis a blocking operation, and returns once the thread T terminates
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o ewemiasmorasepegenmeg
Parallel Fibonacci

uinté4 _t fib(uint64 t n) { int main(int argc, char *argv[]) {
if (n < 2) { uintb4_t result;
return n; if (argc < 2) { return 1; }
} else { uinté4_t n = strtoul(argv[1l], NULL, 0);
uinte4 t x = fib(n-1); if (n < 30) {
uinte4 t y = fib(n-2); result = fib(n);
return (x + y); } else {
} uintb4_t x, y;
} 7 std::thread T1L([&] O { x = fib(nh-1); });
// main can continue executing
y = fib(n-2);
// Wait for the thread to terminate.
T1.j0in(Q);
result = X + y;
}
cout<<"Fibonacci of ”<<n<<" is "<<result<<endl;
return O;
} 7
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Critical Section and Mutual Exclusion

® Critical section is the code executed by only one thread at a time
[*threads compete for update*/

if(my_minval < global_minval)
global_minval = my_minval,

® Mutex locks enforce mutual exclusion in threads as only one thread can local a
mutex at any particular time

® Using mutex lock
o request lock before executing critical section
o  enter critical section when lock granted
o release lock when leaving critical section

® Operations
std::mutex _mtx;
std::unique_lock Ick(_mtx); /*performs lock/unlock operation in current scope®/
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Visualizing Critical Section & Mutual Exclusion

if(my_minval < global_minval)
global_minval = my_minval,

D
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Reduction using Mutex Lock

Std: :mutex _mtx;
int minval;

void *find _minval(void *1list ptr) {

std::unique lock 1lck( _mtx);
/* mutex is automatically locked */

if (my_minval < minval) iy :
ninval = my minvals Critical Section

/* mutex is automatically unlocked */

¥
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T
Condition Variables for Synchronization

® Condition variable is associated with a predicate and a mutex

® Using a condition variable

o thread can block itself until a condition becomes true
= thread locks a mutex

= tests a predicate defined on a shared variable
if predicate is false, then wait on the condition variable
waiting on condition variable unlocks associated mutex

o when some thread makes a predicate true
= that thread can signal the condition variable to either
wake one waiting thread
wake all waiting threads
= when thread releases the mutex, it is passed to first waiter
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Producer Consumer Problem

std::mutex _mtx;

std::condition_variable cv;

bool available=false;

L1: std::unique_lock Ick(_mtx);
L2: cv.wait(lck, [ ]() { return available;});
L3: consume_data();

L4: available=false:

Consumer
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L5: std::unique_lock Ick(_mtx);
L6: if('available) {

L7: create_data();

L8: available=true;

L9: _cv.notify_one(lck);
L10:}

Producer
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[ [ ] 1. uint64_t fib(uint64_t n) {
Using Explicit Ok
3. return n;
4. } else {
u u u 5. uinté4_t x = fib(n-1);
ultithreading is G
return (x + y);
7.}
1. uint64_t fib(uint64_t n) { 8. }
2 if (n < 2) { 9. typedef struct {
3. return n; 10. u1:nt64_t input;
4. } else { 11. uint64_t ou1-:put;
5 uint64 t x = fib(n-1); ig} thread_args;
ok Lo e 2 14-vo1'd *thread_func(void *
: . L ptr) {
7 ) SEE B 57 )8 Pthreads 15. ‘uintt64_t i = ((thread_args *) ptr)-
: >input;
8.} ) 16. ((thread_args *) ptr)-s>output = fib(i);
9. int main(int argc, char *argv[]) { 17. vreturn NULL;
10. uint64_t result = fib(40); 18.}
11. printf(”Result is %" PRIu64 ".\n”, result); 19.int main(int argc, char *argv[]) {
12. return O; 20. pthread_t thread;
13. } 21. thread_args args;
22. int status;
” 23. uint64_t result;
o |SsueS H 24. args.input = n-1;
T 25. status = pthread_create(&thread,
O Scalablllty NULL, thread_func,&args);
. . . 1 |: -
=  This code is only for 2 cores. Rewrite for 20 1T (status = NOLL) L rerurn 15}
27. result = fib(n-2);
more cores 28. // wait for the thread to terminate.
: 29. status = pthread_join(thread, NULL);
O MOdUIarlty 30. if (status != NULL) { return 1; }
. Logic no more neatly encapsulated 31.  result += args.output;
32. printf(”Result is %" PRIu64 ".\n”, result);
O Overhead 33. return 0;

= Recreating thread >10% cycles a5
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Using Explicit

Multithreadingis-Uely (C++)

1. uint64_t fib(uinté4_t n) {
2 if (n < 2) {

e return n;

4. } else {

5 uinte4_t x = fib(n-1);
6 uinté4_t y = fib(n-2);
return (x + y);

7. }
8.}

9. int main(int argc, char *argv[]) {

10. uint64_t result = fib(40);
11. printf(”Result is %" PRIu64
12. return 0;
13. }
® Issues?
o  Scalability

std::threac

uinté4 _t fib(uint64 _t n) {
if (n < 2) {
return n;
} else {
’ uinted4 _t x, y;

".\n”, result);

std::thread t1([&]() {x
) std::thread t2([&]() {y
tl.join(); t2.join();
return (x + y);

}

}

fib(n-1);1});
fib(n-2);1});

7

. This code doesn’t work for N>20 (on my server)
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o  Overhead
. Recreating thread >10% cycles
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o lweorowenoralPoganmne
Tasks Based Parallel Programming Model

T ® High productivity due to serial elision
(n < 2) { o Removing all async and finish constructs
) ‘ - results in a valid sequential program
uinté4_t x, y; o Several existing frameworks support this
fl::;:gg”[‘m)g X - Fib(n-1)50): programming model, although the name of the
y = fib(n-2); o APIs for tasking would be different
})s . .
(x + V)3 ® Uses an underlying high performance
. 7 parallel runtime system for load balancing

of dynamically created asynchronous tasks

__-_--- ——

Serial Elision Yes Yes Yes Yes for simple tasks

spawn-sync H#pragma omp task async-finish async-future
#pragma omp taskwait

based parallel
programming
Performance High High High NO model

[1] http://habanero-rice.github.io/hclib/
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Functional Parallelism using std::async

int main(int argc, char** argv) {
std: :future<int> partl = std::async([=]() { // Task-T1
int res = DO _SOME _WORK();
return res;

1)
int part2 = DO _SOME_OTHER WORK();

//get will block until result is ready // Task-T2
int total = partl.get() + part2;

} 7

Two issues to be addressed:
1) Distinction between container and value in container (future)
2) Synchronization to avoid race condition in container accesses
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s msssommermes
Parallel Fibonacci using std::async

uint64 t fib(uint64 t n) {

if(n<2) {
return n;

} else {
std::future<uint64_t> f1 = std::async([=](){ return fib(n-1); });
std::future<uint64_t> f2 = std::async([=](){ return fib(n-2); });
//get will block until result is ready
return fl.get() + f2.get();

} 7

Let us try some demo to see its performance
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Reading Materials
® https://doi.org/10.1007/s11227-018-2238-4
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https://doi.org/10.1007/s11227-018-2238-4
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Next Lecture 03

® Parallel runtime systems

® Context switching inside the user space

o Boost Fiber library
o Argobots runtime system
o Project deliverable-1 based on Lecture 03 & 04
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