
CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to
Parallel Programming

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Today’s Lecture
● Processor technology trend
● Thread operations
● Tasks based parallel programming model

o Functional Parallelism

Tasks-based parallel programming model and its underlying
runtime system would be referred throughout in this course

1

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Processor Technology Trend

2

● Moore’s law (1964)
o Area of transistors halves roughly every two years

§ I.e., Total transistors on processor chip gets
doubled roughly every two years

● Dennard scaling (1974)
o Power for fixed chip are remains almost constant as

transistors become smaller
● No more free lunch!

o Thermal wall hit around 2004
o Power is proportional to cube of frequency

§ It restricts frequency growth, but opens up the
multicore era

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Adding More Cores Improves performance?

3

● Computation is just part of the
picture

● Memory latency and bandwidth
o CPU rates have increased 4x as

fast as memory over last decade
o Bridge speed gap using memory

hierarchy
o Multicore exacerbates demand

● Inter-processor communication
● Input/Output

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Parallelism within a Single Core
● Instruction level parallelism (Free Parallelism)

4

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Free Lunch is Over!

5

● Industrial and commercial
users of parallel computing
o BigData, Databases, Data

mining
o Artificial intelligence
o Oil exploration
o Web search engines, web

based business services
(Facebook, Twitter, etc.)

o Medical imaging and
diagnosis

o Financial and economic
modelling

o Advanced graphics and
virtual reality

o Collaborative work
environment

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Today’s Lecture
● Processor technology trend
● Thread operations
● Tasks based parallel programming model

o Functional Parallelism

6

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Thread – A Lightweight Process
● Processes are heavyweight

o Personal address space (allocated
memory)

o Communication across process always
requires help from Operating System

● Threads are lightweight
o Share resources inside the parent process

(code, data and files)
§ Easy to communicate across sibling threads!

o They have their own personal stack (local
variables, caller-callee relationship between
function)
§ Each thread is assigned a different job in the

program

● A process can have one or more threads

7

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Advantages of Multithreading
● Responsiveness

o Even if part of program is blocked or performing lengthy operation,
multithreading allows the program to continue

● Economical resource sharing
o Threads share memory and resources of their parent process

which allows multiple tasks to be performed simultaneously inside
the process

● Utilization of multicores
o Easily scale on modern multicore processors

8

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Amdahl's Law
● Gives an estimate of maximum expected improvement S

to an overall system when only part of the system FE is
improved by a factor FI

9

Part of the system that CANNOT be improved Part of the system that CAN be improved

Entire System

TP

Improvement

Time = TS1 Time = TS2

TS1 + TS2

TS1 + TP

Speedup using P processes =

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Thread Creation and Join Operations
● Creation

o std::thread T(/* Pass a lambda function */ [=]() {
S1();

});
S2();

o Choose the correct option
§ S1 & S2 will execute in parallel
§ S1 & S2 may execute in parallel
§ S2 will execute before S1

● Join
o T.join();

§ It is a blocking operation, and returns once the thread T terminates

10

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Parallel Fibonacci

11

int main(int argc, char *argv[]) {
uint64_t result;
if (argc < 2) { return 1; }
uint64_t n = strtoul(argv[1], NULL, 0);
if (n < 30) {
result = fib(n);

} else {
uint64_t x, y;
std::thread T1([&]() { x = fib(n-1); });
// main can continue executing
y = fib(n-2);
// Wait for the thread to terminate.
T1.join();
result = x + y;

}
cout<<"Fibonacci of ”<<n<<" is "<<result<<endl;
return 0;

}

uint64_t fib(uint64_t n) {
if (n < 2) {
return n;

} else {
uint64_t x = fib(n-1);
uint64_t y = fib(n-2);
return (x + y);

}
}

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Critical Section and Mutual Exclusion

12

● Critical section is the code executed by only one thread at a time
/*threads compete for update*/
if(my_minval < global_minval)

global_minval = my_minval;
● Mutex locks enforce mutual exclusion in threads as only one thread can local a

mutex at any particular time
● Using mutex lock

o request lock before executing critical section
o enter critical section when lock granted
o release lock when leaving critical section

● Operations
std::mutex _mtx;
std::unique_lock lck(_mtx); /*performs lock/unlock operation in current scope*/

78jRkQFAqpJSsr6GSXR4

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Visualizing Critical Section & Mutual Exclusion

13

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Reduction using Mutex Lock
Std::mutex _mtx;
int minval;
...
void *find_minval(void *list_ptr) {

...
std::unique_lock lck(_mtx);
/* mutex is automatically locked */

if (my_minval < minval)
minval = my_minval;

/* mutex is automatically unlocked */
}

14

Critical Section

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Condition Variables for Synchronization
● Condition variable is associated with a predicate and a mutex
● Using a condition variable

o thread can block itself until a condition becomes true
§ thread locks a mutex
§ tests a predicate defined on a shared variable

if predicate is false, then wait on the condition variable
waiting on condition variable unlocks associated mutex

o when some thread makes a predicate true
§ that thread can signal the condition variable to either

wake one waiting thread
wake all waiting threads

§ when thread releases the mutex, it is passed to first waiter

15

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Producer Consumer Problem
std::mutex _mtx;
std::condition_variable _cv;
bool available=false;

16

L5: std::unique_lock lck(_mtx);
L6: if(!available) {
L7: create_data();
L8: available=true;
L9: _cv.notify_one(lck);
L10: }

Producer

L1: std::unique_lock lck(_mtx);
L2: _cv.wait(lck, []() { return available;});
L3: consume_data();
L4: available=false;

Consumer

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Today’s Lecture
● Processor technology trend
● Thread operations
● Tasks based parallel programming model

o Functional Parallelism

17

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Using Explicit
Multithreading is Ugly (C)

● Issues?
o Scalability

§ This code is only for 2 cores. Rewrite for
more cores

o Modularity
§ Logic no more neatly encapsulated

o Overhead
§ Recreating thread >104 cycles

18

Pthreads

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Using Explicit
Multithreading is Ugly (C++)

● Issues?
o Scalability

§ This code doesn’t work for N>20 (on my server)
o Modularity

§ Logic no more neatly encapsulated
o Overhead

§ Recreating thread >104 cycles
19

uint64_t fib(uint64_t n) {
if (n < 2) {

return n;
} else {
uint64_t x, y;
std::thread t1([&]() {x = fib(n-1);});
std::thread t2([&]() {y = fib(n-2);});
t1.join(); t2.join();
return (x + y);

}
}

std::thread

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Tasks Based Parallel Programming Model
● High productivity due to serial elision

o Removing all async and finish constructs
results in a valid sequential program

o Several existing frameworks support this
programming model, although the name of the
APIs for tasking would be different

● Uses an underlying high performance
parallel runtime system for load balancing
of dynamically created asynchronous tasks

20

Java Fork/Join Cilk OpenMP HClib[1] TBB C++11

Serial Elision NO Yes
spawn-sync

Yes
#pragma omp task

#pragma omp taskwait

Yes
async-finish

NO Yes
async-future

Performance Limited High Limited High High NO
[1] http://habanero-rice.github.io/hclib/

Popular options
for simple tasks
based parallel
programming

model

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Functional Parallelism using std::async

21

int main(int argc, char** argv) {
std::future<int> part1 = std::async([=]() { // Task-T1

int res = DO_SOME_WORK();
return res;

});
int part2 = DO_SOME_OTHER_WORK();
//get will block until result is ready // Task-T2

int total = part1.get() + part2;
}

Two issues to be addressed:
1) Distinction between container and value in container (future)
2) Synchronization to avoid race condition in container accesses

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Parallel Fibonacci using std::async

22

uint64_t fib(uint64_t n) {
if(n<2) {

return n;
} else {

std::future<uint64_t> f1 = std::async([=](){ return fib(n-1); });
std::future<uint64_t> f2 = std::async([=](){ return fib(n-2); });
//get will block until result is ready
return f1.get() + f2.get();

}
}

Let us try some demo to see its performance

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Reading Materials
● https://doi.org/10.1007/s11227-018-2238-4

24

https://doi.org/10.1007/s11227-018-2238-4

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Next Lecture 03
● Parallel runtime systems
● Context switching inside the user space

o Boost Fiber library
o Argobots runtime system
o Project deliverable-1 based on Lecture 03 & 04

25

