Lecture 02: Introduction to
Parallel Programming

Vivek Kumar
Computer Science and Engineering
IIIT Delhi
vivekk@iiitd.ac.in

© Vivek Kumar

L
Today’s Lecture

=>® Processor technology trend
® Thread operations

® Tasks based parallel programming model
o Functional Parallelism

Tasks-based parallel programming model and its underlying
runtime system would be referred throughout in this course

1P

Lecture 02: Introduction to Parallel Programming

Power Density
(W/cm2)

Processor Technology Trend - s

35 YEARS OF MICROPROCESSOR TREND DATA

7 b .
10 i i _-7. Transistors
H (thousands)
6
10" ¢
5
10" +
Single-thread
4 Performance
10 ¢ (SpecINT)
3
10" ¢
2 -- Typical Power
10" ¢ (Watts)
1 T Number of
10" ¢ Cores
o
o N
O —

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Floating point peak performance [Gflop/s]
CPU Frequency [GHz]

1000
Cores: 8x_ ~360 Gflop/s
Vector units: 8x
100
parallelism:
work required
10
4 4 8cores
~3 GHz
Pentium 4 Core Nehalem Haswell |
Pentium Il Sandy Bridge
Pentium Il f
Pentium Pro ree speedup
0.1
0.0l

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

Year

E CSE513: Parallel Runtimes for Modern Processors

1000 } Rocket Nozzle — ot

Nuclear Reactor —_)
Intel® Core™2 Duo

100 processor
8086 P4
10 > ot Plate—»3
8008 8085 4386 ¢ Pentium®
w0eG s 286 2486
SR A S S
1970 1980 1990 2000 2010
Year

Moore's law (1964)

o Area of transistors halves roughly every two years
" |.e., Total transistors on processor chip gets
doubled roughly every two years
Dennard scaling (1974)

o Power for fixed chip are remains almost constant as
transistors become smaller

No more free lunch!
o Thermal wall hit around 2004

o Power is proportional to cube of frequency

" It restricts frequency growth, but opens up the
multicore era

© Vivek Kumar 2

Lecture 02: Introduction to Parallel Programming

Adding More Cores Improves performance?

® Computation is just part of the
picture

® Memory latency and bandwidth

o CPU rates have increased 4x as
fast as memory over last decade

o Bridge speed gap using memory 10’000
hierarchy 000 Jee e e |
o |V|U|tICOre exacerbates demand é 0700 T S
. I nte r_p roceSSO r CO m m u n i Cati O né 00 heeeereeememceeemescismemeeciemseeeseeesseses e B es sttt et ettt e
® Input/Output

Year

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 3

T
Parallelism within a Single Core

® Instruction level parallelism (Free Parallelism)

Decode

1

Free Lunch is Over!

® Industrial and commercial
users of parallel computing

o BigData, Databases, Data
instructions m|n|ng

. l" l | |_.- o Artificial intelligence
o QOil exploration
. S o Web search engines, web
based business services
(Facebook, Twitter, etc.)
- "' l | l"'- o Medical imaging and
diagnosis

_.'|'l ' |—o- o Financial and economic
IN 3 2 1 mOdelllng

o Advanced graphics and
virtual reality

o Collaborative work
environment

1D

Today’s Lecture

® Processor technology trend
=)>® Thread operations

® Tasks based parallel programming model
o Functional Parallelism

D

Lecture 02: Introduction to Parallel Programming

Thread — A Lightweight Process

code data

files

code

data

files

registers

stack

registers

registers

registers

thread —> é

stack

stack

stack

%

é

é_

— thread

single-threaded process

multithreaded process

E CSE513: Parallel Runtimes for Modern Processors

® Processes are heavyweight

o Personal address space (allocated
memory)

o Communication across process always
requires help from Operating System

® Threads are lightweight

o Share resources inside the parent process
(code, data and files)
. Easy to communicate across sibling threads!

o They have their own personal stack (local
variables, caller-callee relationship between

function)
. Each thread is assigned a different job in the
program

® A process can have one or more threads

© Vivek Kumar 7

Lecture 02: Introduction to Parallel Programming

Advantages of Multithreading

® Responsiveness

o Even if part of program is blocked or performing lengthy operation,
multithreading allows the program to continue

® Economical resource sharing

o Threads share memory and resources of their parent process
which allows multiple tasks to be performed simultaneously inside
the process

® Ultilization of multicores
o Easily scale on modern multicore processors

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Amdahl's Law

® Gives an estimate of maximum expected improvement S
to an overall system when only part of the system F¢ is
improved by a factor F,

Entire System

Time = Ts1 Time = TS2
Part of the system that CANNOT be improved Part of the system that CAN be improved
| - R
Speedup using P processes = Improvement
Ts1+ Tp

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 02: Introduction to Parallel Programming

Thread Creation and Join Operations

® Creation
o std::thread T(/* Pass a lambda function */ [=]() {
S1();
});
S2();

o Choose the correct option
= S1 & S2 will execute in parallel
= S1 & S2 may execute in parallel
= S2 will execute before S1

® Join
o T.join();
= |tis a blocking operation, and returns once the thread T terminates

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

10

o ewemiasmorasepegenmeg
Parallel Fibonacci

uinté4 _t fib(uint64 t n) { int main(int argc, char *argv[]) {
if (n < 2) { uintb4_t result;
return n; if (argc < 2) { return 1; }
} else { uinté4_t n = strtoul(argv[1l], NULL, 0);
uinte4 t x = fib(n-1); if (n < 30) {
uinte4 t y = fib(n-2); result = fib(n);
return (x + y); } else {
} uintb4_t x, y;
} 7 std::thread T1L([&] O { x = fib(nh-1); });
// main can continue executing
y = fib(n-2);
// Wait for the thread to terminate.
T1.j0in(Q);
result = X + y;
}
cout<<"Fibonacci of ”<<n<<" is "<<result<<endl;
return O;
} 7

1P

Lecture 02: Introduction to Parallel Programming

Critical Section and Mutual Exclusion

® Critical section is the code executed by only one thread at a time
[*threads compete for update*/

if(my_minval < global_minval)
global_minval = my_minval,

® Mutex locks enforce mutual exclusion in threads as only one thread can local a
mutex at any particular time

® Using mutex lock
o request lock before executing critical section
o enter critical section when lock granted
o release lock when leaving critical section

® Operations
std::mutex _mtx;
std::unique_lock Ick(_mtx); /*performs lock/unlock operation in current scope®/

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 12

Visualizing Critical Section & Mutual Exclusion

if(my_minval < global_minval)
global_minval = my_minval,

D

Lecture 02: Introduction to Parallel Programming

Reduction using Mutex Lock

Std: :mutex _mtx;
int minval;

void *find _minval(void *1list ptr) {

std::unique lock 1lck(_mtx);
/* mutex is automatically locked */

if (my_minval < minval) iy :
ninval = my minvals Critical Section

/* mutex is automatically unlocked */

¥

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

14

T
Condition Variables for Synchronization

® Condition variable is associated with a predicate and a mutex

® Using a condition variable

o thread can block itself until a condition becomes true
= thread locks a mutex

= tests a predicate defined on a shared variable
if predicate is false, then wait on the condition variable
waiting on condition variable unlocks associated mutex

o when some thread makes a predicate true
= that thread can signal the condition variable to either
wake one waiting thread
wake all waiting threads
= when thread releases the mutex, it is passed to first waiter

1P

Lecture 02: Introduction to Parallel Programming

Producer Consumer Problem

std::mutex _mtx;

std::condition_variable cv;

bool available=false;

L1: std::unique_lock Ick(_mtx);
L2: cv.wait(lck, []() { return available;});
L3: consume_data();

L4: available=false:

Consumer

E CSE513: Parallel Runtimes for Modern Processors

© Vivek Kumar

L5: std::unique_lock Ick(_mtx);
L6: if('available) {

L7: create_data();

L8: available=true;

L9: _cv.notify_one(lck);
L10:}

Producer

16

Today’s Lecture

® Processor technology trend
® Thread operations

=>® Tasks based parallel programming model
o Functional Parallelism

D

Lecture 02: Introduction to Parallel Programming

[[] 1. uint64_t fib(uint64_t n) {
Using Explicit Ok
3. return n;
4. } else {
u u u 5. uinté4_t x = fib(n-1);
ultithreading is G
return (x + y);
7.}
1. uint64_t fib(uint64_t n) { 8. }
2 if (n < 2) { 9. typedef struct {
3. return n; 10. u1:nt64_t input;
4. } else { 11. uint64_t ou1-:put;
5 uint64 t x = fib(n-1); ig} thread_args;
ok Lo e 2 14-vo1'd *thread_func(void *
: . L ptr) {
7) SEE B 57)8 Pthreads 15. ‘uintt64_t i = ((thread_args *) ptr)-
: >input;
8.}) 16. ((thread_args *) ptr)-s>output = fib(i);
9. int main(int argc, char *argv[]) { 17. vreturn NULL;
10. uint64_t result = fib(40); 18.}
11. printf(”Result is %" PRIu64 ".\n”, result); 19.int main(int argc, char *argv[]) {
12. return O; 20. pthread_t thread;
13. } 21. thread_args args;
22. int status;
” 23. uint64_t result;
o |SsueS H 24. args.input = n-1;
T 25. status = pthread_create(&thread,
O Scalablllty NULL, thread_func,&args);
. . . 1 |: -
= This code is only for 2 cores. Rewrite for 20 1T (status = NOLL) L rerurn 15}
27. result = fib(n-2);
more cores 28. // wait for the thread to terminate.
: 29. status = pthread_join(thread, NULL);
O MOdUIarlty 30. if (status != NULL) { return 1; }
. Logic no more neatly encapsulated 31. result += args.output;
32. printf(”Result is %" PRIu64 ".\n”, result);
O Overhead 33. return 0;

= Recreating thread >10% cycles a5

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 18

Lecture 02: Introduction to Parallel Programming

Using Explicit

Multithreadingis-Uely (C++)

1. uint64_t fib(uinté4_t n) {
2 if (n < 2) {

e return n;

4. } else {

5 uinte4_t x = fib(n-1);
6 uinté4_t y = fib(n-2);
return (x + y);

7. }
8.}

9. int main(int argc, char *argv[]) {

10. uint64_t result = fib(40);
11. printf(”Result is %" PRIu64
12. return 0;
13. }
® Issues?
o Scalability

std::threac

uinté4 _t fib(uint64 _t n) {
if (n < 2) {
return n;
} else {
’ uinted4 _t x, y;

".\n”, result);

std::thread t1([&]() {x
) std::thread t2([&]() {y
tl.join(); t2.join();
return (x + y);

}

}

fib(n-1);1});
fib(n-2);1});

7

. This code doesn’t work for N>20 (on my server)

SR VP T P T V—

——t—— O EHO=O=FAOEE=R O S = OO SH OO S

o Overhead
. Recreating thread >10% cycles

E CSE513: Parallel Runtimes for Modern Processors

© Vivek Kumar

19

o lweorowenoralPoganmne
Tasks Based Parallel Programming Model

T ® High productivity due to serial elision
(n < 2) { o Removing all async and finish constructs
) ‘ - results in a valid sequential program
uinté4_t x, y; o Several existing frameworks support this
fl::;:gg”[‘m)g X - Fib(n-1)50): programming model, although the name of the
y = fib(n-2); o APIs for tasking would be different
})s . .
(x + V)3 ® Uses an underlying high performance
. 7 parallel runtime system for load balancing

of dynamically created asynchronous tasks

__-_--- ——

Serial Elision Yes Yes Yes Yes for simple tasks

spawn-sync H#pragma omp task async-finish async-future
#pragma omp taskwait

based parallel
programming
Performance High High High NO model

[1] http://habanero-rice.github.io/hclib/

1D

Lecture 02: Introduction to Parallel Programming

Functional Parallelism using std::async

int main(int argc, char** argv) {
std: :future<int> partl = std::async([=]() { // Task-T1
int res = DO _SOME _WORK();
return res;

1)
int part2 = DO _SOME_OTHER WORK();

//get will block until result is ready // Task-T2
int total = partl.get() + part2;

} 7

Two issues to be addressed:
1) Distinction between container and value in container (future)
2) Synchronization to avoid race condition in container accesses

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

s msssommermes
Parallel Fibonacci using std::async

uint64 t fib(uint64 t n) {

if(n<2) {
return n;

} else {
std::future<uint64_t> f1 = std::async([=](){ return fib(n-1); });
std::future<uint64_t> f2 = std::async([=](){ return fib(n-2); });
//get will block until result is ready
return fl.get() + f2.get();

} 7

Let us try some demo to see its performance

1P

T
Reading Materials
® https://doi.org/10.1007/s11227-018-2238-4

D

https://doi.org/10.1007/s11227-018-2238-4

Lecture 02: Introduction to Parallel Programming

Next Lecture 03

® Parallel runtime systems

® Context switching inside the user space

o Boost Fiber library
o Argobots runtime system
o Project deliverable-1 based on Lecture 03 & 04

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

25

