
CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime
Systems

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Last Lecture: Recap

● Free lunch is now over!
o Multicore processors everywhere

● Amdahl’s law
● Explicit multithreading
● Thread synchronization
● Functional parallelism

1

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Today’s Lecture
● Parallel programming landscape
● Linux kernel scheduler

o Context switching

● Parallel runtime system for task-scheduling
o Work-sharing
o Work-stealing

2

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Multicore Parallel Programming Landscape
● Newer tasks-based

programming models
o OpenMP tasks, HClib, TBB,

HPX, etc.
● Thread-based programming

model
o OpenMP work-sharing loops

§ Very popular!
§ Being used extensively in

several real world applications
• Some of them were written

really long ago
• Hard to change to newer

programming models
• Nested thread creation

• Creates threads
exponentially

3
OpenMP picture source: https://www.mcs.anl.gov/~iwasaki/pdfs/papers/PACT2019_slides.pdf

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Parallel Runtime System

4

High performance load-balancing of
“Tasks” and “Threads”

GPU

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Multicore Parallel Programming Landscape
● Newer tasks-based

programming models
o OpenMP tasks, HClib, TBB,

HPX, etc.
● Thread-based programming

model
o OpenMP work-sharing loops

§ Most popular
§ Being used extensively in

several real world applications
• Some of them were written

really long ago
• Hard to change to newer

programming models
• Nested thread creation

• Creates threads
exponentially

5
OpenMP picture source: https://www.mcs.anl.gov/~iwasaki/pdfs/papers/PACT2019_slides.pdf

Requirement: Parallel
runtime system that

could schedule “tasks”

Requirement: Parallel
runtime system that

could schedule “threads”

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Let us first try to understand the
issues with threads

6

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Today’s Lecture
● Parallel programming landscape
● Linux kernel scheduler

o Context switching

● Parallel runtime system for task-scheduling
o Work-sharing
o Work-stealing

7

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Thread Stack

8

int main() {
/* Create Thread-1 */
/* Create Thread-2 */

}
void A(…) {

/* Executed by Thread-1 */
B(…);

}
void B(….) {

….
}
void C(…) {

/* Executed by Thread-2 */
}
……

Parameter-1 in B
A’s EBP

Parameter-2 in B

Return address EIP of A

Saved EBP of A

Local variable-1 in B
B’s EBP

ESP

Stack Bottom

Stack Top

St
ac

k
G

ro
w

th

Local variable-2 in B

Temporary data for B

void Code_B() {
/* method prologue */
push EBP // store A’s EBP on stack
move EBP, ESP // save current stack pointer in EBP
sub ESP, N // N bytes reserved for local variable
/* method body */
/* method epilogue */
mov ESP, EBP
pop EBP
pop EIP
jmp EIP

}

Assembly for B

EBP

ESP
A()

EBP

ESP

A()

B()

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Linux Kernel Scheduler

● CFS uses virtual runtime (vruntime) variable in PCB
to keep track of time a process has executed on the
CPU, and it is updated at every context switch
o vruntime += t * weight based on process priority

● Process with the minimum vruntime gets chance to
execute earlier (CFS uses red black tree)

● If thread T1 of a process P receives CPU slice “T”,
then vruntime of all the threads of P (including T1)
incremented by “T” (for fairness with other processes)

9

Task EP0 EP1 EP2 EP3

T1 (BT=2) 1 1

T2 (BT=2) 1 1

T3 (BT=4) 1 1 2

T4 (BT=6) 1 1 2 2

● Several types of scheduling algorithm exists for scheduling
processes and threads over the CPUs

● Latest kernel (since 2.6.23) uses Completely Fair Scheduler
(CFS) by default
o Attempts to divide the CPU time fairly (equally) among all the processes

§ Example below shows ideal fairness based scheduling for 4 processes with
Burst Time (BT) as 2, 2, 4, and 6 seconds. Assume CPU slice is 4 seconds

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Scheduling
● Cooperative

o Processes/threads decide when to yield the CPU
● Preemptive (e.g., used by Linux kernel scheduler)

o Processes/threads preempted at blocking points
§ IO
§ Sleep
§ Wait (locking)
§ Interrupts

● Context switch required in each case!

10

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Context Switch: Why?
● Could happen due to several reasons

o Blocking operations (IO, synchronizations, etc.)
o Arrival of a high priority process
o Process terminating
o Process has exhausted its allotted CPU slice

§ It would be the primary reason when several processes/threads are
being used for running parallel program(s)

11

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Context Switch: What?

12

Thread-1 Stack

Thread-2 Stack

Thread-N Stack

ESP Thread-1

ESP Thread-2

ESP Thread-N

Heap space

Data segment

Code segment
EIP Thread-1

EIP Thread-2

EIP Thread-N

Context switching
fromThread-2 to
Thread-1

R0
R1

RN

……

Core-A

SP

Hardware
Registers

IP

R0
R1

RN

……

Core-A

SP
IP

Switching the CPU
to another
process/thread by
saving the state of
the old
process/thread and
loading the saved
state for the new
process/thread

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Context Switch: How?
● CPU C0 sends timer interrupt
● Process PA running on CPU C0 switches from its user stack into

its kernel stack
● Key registers (ESP, EIP, etc.) saved automatically by the CPU

C0 in the kernel stack of PA
● OS saves rest of the registers in the kernel stack of PA
● Kernel scheduler determines that process PB will now execute

next on the CPU C0
● Scheduler now points to the kernel stack of PB
● Reload all registers from the kernel stack of PB and switch to its

user stack

13

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Context Switch: Cost?

0

2

4

6

8

10

12

32 128 512 2048 8192

14

Total processes

C
on

te
xt

 s
w

itc
h

tim
e

(m
ic

ro
 s

ec
on

ds
)

● Context switch overhead
measured on an AMD
EPYC 32-core processor
running Ubuntu 18.04.3
LTS
o Data generated using

lmbench benchmark
(./lat_ctx –s 0 32 128 512
2048 8192)

● Overheads
o Timer interrupt latency
o Saving restoring context
o Process scheduling
o Reloading TLB
o Loss in cache locality

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Today’s Lecture
● Parallel programming landscape
● Linux kernel scheduler

o Context switching

● Parallel runtime system for task-scheduling
o Work-sharing
o Work-stealing

15

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Parallel Runtime for Task Scheduling
● There are several different implementations of task

scheduling runtimes, but at the core all these
implementations can be divided into following two
categories
o Work-sharing
o Work-stealing

16

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Work-Sharing Runtime System

17

W1 W2 W3

Push Push Pop

Locality ? Why ?

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Work-Stealing Runtime System

18

W1 W2 W3

Push Pop

StealTail End

Head End

D
eq

ueLocality ? Why ?

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Sharing v/s Stealing
● Work-sharing

o Busy worker re-distributes the task eagerly
o Easy implementation through global task pool
o Access to the global pool needs to be synchronized: scalability

bottleneck
● Work-stealing

o Busy worker pays little overhead to enable stealing
§ A lock is required for pop and steal only in case single task remaining on

deque (only feasible by using atomic operations)
§ Idle worker steals the tasks from busy workers

o Distributed task pools
o Better scalability

19

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Supported on Wide Range of Architectures

20

Multiprocessor System-on-Chip

Supercomputers

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Supported/Used by Several Companies/Projects

21

Twitter

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Reading Materials
● https://gee.cs.oswego.edu/dl/papers/fj.pdf
● https://docs.kernel.org/scheduler/index.html

22

https://gee.cs.oswego.edu/dl/papers/fj.pdf
https://docs.kernel.org/scheduler/index.html

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Next Lecture (#04)
● Context switching inside the user space

o Boost library

23

