Lecture 03: Parallel Runtime
Systems

Vivek Kumar
Computer Science and Engineering
IIIT Delhi
vivekk@iiitd.ac.in

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems int

Last Lecture: Recap }

Entire System

Time =.Ts1 ‘ Time = Téz

Part of the system that CANNOT be improved Part of the system that CAN be improved }

uint64_t result;

if (argc < 2) { return 1; }

uint64_t n = strtoul(argv[1l], NULL, 0);
if (n < 30) {

cout<<"Fibonacci of ”<<n<<" is "<<result<<endl;

}
Tg1 + T2 7

main(int argc, char *argv[]) {

result = fib(n);

else {

uint64_t x, y;

std::thread T1([&] (O { x = fib(n-1); });
// main can continue executing

y = fib(n-2);

// wait for the thread to terminate.
T1l.j0inQ;

result = x + y;

Speedup using P processes = - ' Improvement

® Free lunch is now over!

std::mutex _mtx;
std::condition_variable _cv;
bool available=false;

L5: std::unique_lock Ick(_mtx);

o Multicore processors everywhere NN

L3: consume_data();

o Am d a h I ,S I aw L4: available=false;

Consumer

L8: available=true;
L9: _cv.notify_one(Ick);
L10:}

Producer

® Explicit multithreading RE—

if(n<2) {
return n;

® Thread synchronization - T

std::future<uint64_t>

¥

f1 = std::async([=](){ return fib(n-1); });
f2 = std::async([=](){ return fib(n-2); });

//get will block until result is ready

® FunCthnal para”ehsm | returr Fl.get() + f2.get();

7

[E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Today’s Lecture

=>® Parallel programming landscape

® Linux kernel scheduler
o Context switching

® Parallel runtime system for task-scheduling
o Work-sharing
o Work-stealing

[E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Multicore Parallel Programming Landscape

uint64 t fib(uint64 t n) {
if(n<2) {
return n;

} else {
std::future<uint64_t> f1
std::future<uint64_t> f2
//get will block until result is
return fl.get() + f2.get();

std::async([=](){ return fib(n-1); });
std: :async([=](){ return fib(n-2); });

ready

4

#pragma omp parallel for
for (1 =0; i < n; i++)
dgemv(matrix[n], ...);

// BLAS library
void dgemv(...) {
#pragma omp parallel for

for (i =0; i < n; i++)
dgemv_seq(data[n], 1);

0%

Code Example

User Applications

Scientific Library

l N OpenMP-parallelized code

| OpenMP-parallelized code |

------------------- 1

|

& Math-l.;bnarvA_ |

| Math Library B '

[oromie [
!
~

o
)

.t

C Ay

\ 4
High-Lével

'R[mtims System

.
..
Y
..
.
wet®
.
.
..
Y
..

OpenMP Runtime System

OpenMP picture source: https://www.mcs.anl.gov/~iwasaki/pdfs/papers/PACT2019_slides.pdf

E CSE513: Parallel Runtimes for Modern Processors

© Vivek Kumar

® Newer tasks-based
programming models

O

OpenMP tasks, HClib, TBB,
HPX, etc.

® [hread-based programming
model

O

OpenMP work-sharing loops

= Very popular!

= Being used extensively in
several real world applications

. Some of them were written
really long ago

. Hard to change to newer
programming models

. Nested thread creation

. Creates threads
exponentially

o sommeemmeswes
Parallel Runtime System

Parallel Program

High performance load-balancing of

_ “Tasks” and “Threads”
Compiler

Parallel Runtime

Operating System

CPU GPU

<
)
3
o
<

D

o weosraRmimeseens
Multicore Parallel Programming Landscape

: Parallel
runtime system that
could schedule “

: Parallel
runtime system that
could schedule “

Lecture 03: Parallel Runtime Systems

Let us first try to understand the
iIssues with threads

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 03: Parallel Runtime Systems

Today’s Lecture

® Parallel programming landscape

=>® Linux kernel scheduler
o Context switching

® Parallel runtime system for task-scheduling
o Work-sharing
o Work-stealing

[E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Stack Bottom int main() {
Thread Stack il
< A’s EBP [* Create Thread-2 */
Parameter-1in B }
- Parameter-2 in B void A(...) {
< /* Executed by Thread-1 */
<— EBP 8 Return address EIP of A B(...);
A() % Saved EBPOfA | . oo } 4B
8 's voi
<« ESP n Local variable-1 in B
v Local variable-2 in B 3/oid Cl) A
Temporary data for B * 2%
porary < ESP \ /* Executed by Thread-2 */
Stack Top
v void Code_B() {
/* method prologue */
push EBP /I store A’s EBP on stack
A() move EBP, ESP I/l save current stack pointer in EBP
<— EBP sub ESP, N /I N bytes reserved for local variable
/* method body */
B() /* method epilogue */
<—ESP mov ESP, EBP
oop EBP Assembly for B
pop EIP
jmp EIP
}

D

Lecture 03: Parallel Runtime Systems

Linux Kernel Scheduler

® Several types of scheduling algorithm exists for scheduling
processes and threads over the CPUs

® Latest kernel (since 2.6.23) uses Completely Fair Scheduler
(CFS) by default
o Attempts to divide the CPU time fairly (equally) among all the processes
= Example below shows ideal fairness based scheduling for 4 processes with
Burst Time (BT) as 2, 2, 4, and 6 seconds. Assume CPU slice is 4 seconds

® CFS uses virtual runtime (vruntime) variable in PCB
to keep track of time a process has executed on the
CPU, and it is updated at every context switch

T1(BT=2) 1 1 o vruntime +=t * weight based on process priority
T2(B7=2) 1 1 ® Process with the minimum vruntime gets chance to
T3(BT=4) 1 1 2 execute earlier (CFS uses red black tree)

TaBT=6) 1 1 2 2 @ |Ifthread T1 of a process P receives CPU slice “T",

then vruntime of all the threads of P (including T1)
incremented by “T” (for fairness with other processes)

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 9

Lecture 03: Parallel Runtime Systems

Scheduling

® Cooperative
o Processes/threads decide when to yield the CPU

® Preemptive (e.g., used by Linux kernel scheduler)

o Processes/threads preempted at blocking points
= |O
= Sleep
= Wait (locking)
= Interrupts

® Context switch required in each case!

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

10

Lecture 03: Parallel Runtime Systems

Context Switch: Why?

® Could happen due to several reasons
o Blocking operations (1O, synchronizations, etc.)
o Arrival of a high priority process
o Process terminating
O

Process has exhausted its allotted CPU slice

= |t would be the primary reason when several processes/threads are
being used for running parallel program(s)

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Context Switch: What?

Hardware
Registers Core-A
Context switching
f Thread-2 t
O | e
RN
Switching the CPU 5

to another
process/thread by
saving the state of
the old
process/thread and
loading the saved
state for the new
process/thread

D

<+— ESP Thread-1

<+— ESP Thread-2

Thread-N Stack

<«— ESP Thread-N

Heap space

Data segment

>%}{e‘segment -

d

EIP Thread-1
—— EIP Thread-N

<

EIP Thread-2

Lecture 03: Parallel Runtime Systems

Context Switch: How?

CPU C, sends timer interrupt

Process P, running on CPU C, switches from its user stack into
Its kernel c@tack

Key registers (ESP, EIP, etc.) saved automatically by the CPU
C,In the kernel stack of P,

OS saves rest of the registers in the kernel stack of P,

Kernel scheduler determines that process Pg will now execute
next on the CPU C,

Scheduler now points to the kernel stack of Pg

Reload all registers from the kernel stack of Pgand switch to its
user stack

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 13

o wemparmmesens
Context Switch: Cost?

® Context switch overhead
measured on an AMD

EPYC 32-core processor

running Ubuntu 18.04.3
LTS
o Data generated using
Imbench benchmark
Jlat_ctx —s 0 32 128 512
@

[EEY
N

=
o

(00}

048°8192)

Overheads

o Timer interrupt latency
Saving restoring context

32 128 512 2048 8192 Process scheduling

O
O
Total processes o Reloading TLB
o Loss in cache locality

1P

D

Context switch time (micro seconds)
N (@)

o

Lecture 03: Parallel Runtime Systems

Today’s Lecture

® Parallel programming landscape

® Linux kernel scheduler
o Context switching

=)>® Parallel runtime system for task-scheduling
o Work-sharing
o Work-stealing

[E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

15

Lecture 03: Parallel Runtime Systems

Parallel Runtime for Task Scheduling

® There are several different implementations of task
scheduling runtimes, but at the core all these
implementations can be divided into following two
categories
o Work-sharing
o Work-stealing

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

16

Work-Sharing Runtime System

Push Push

Work-Stealing Runtime System

Tail End Steal
% j ’/\\ ﬁ _ a
Pid \\\ \\\

Deque

Head End

1P

Lecture 03: Parallel Runtime Systems

Sharing v/s Stealing

® \Work-sharing
o Busy worker re-distributes the task eagerly
o Easy implementation through global task pool

o Access to the global pool needs to be synchronized: scalability
bottleneck

® \Work-stealing

o Busy worker pays little overhead to enable stealing

= Alock is required for pop and steal only in case single task remaining on
deque (only feasible by using atomic operations)

= |dle worker steals the tasks from busy workers
o Distributed task pools

o Better scalability

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

19

Supported on Wide Range of Architectures

Multi-core Processor

Individual Individual Individual Individual
Memory Memory Memory Memory
1| | |

Shared Memory
K Bus Interface
S -/

v Chip Boundary

Multiprocessor System-on-Chip

Shared Memory (NUMA) SIMD

Bus Interconnect

Data pool
\ector unit

C

Lecture 03: Parallel Runtime Systems

Supported/Used by Several Companies/Projects

oneAPI

facebook/folly

An open-source C++ library developed and used at

Facebook.
A 679 © 328 ¥ 238k ¥ Bk
Contributors Issues Stars Forks

0N

PYTHRCH

O Product

1 pytorch / pytorch Public

<> Code () Issues 5k+

1 Pullrequests 838

Team Enterprise Explore Marketplace Pricing

® Actions [Projects 25 J wiki @ Security

¥ master ~ pytorch / caffe2 / utils / threadpool / ThreadPool.h

Karol Kosik [XROS][ML] System specific adjustments for UTs to work. (#65245) ...

A 11 contributors Q 9 ﬂ '-n ‘H' e m *v " 0 e

67 lines (53 sloc) 1.94 KB

1 #ifndef CAFFE2_UTILS_THREADPOOL_H_
2 #define CA ITILS_THREADPOOL_H_
3
4

#include "ThreadPoolCommon.h"

#include <atomic>

de <functional>

#include <memory>

de <mutex>
10 #include <vector>

12 #include "caffe2/core/common.h"

// A work-stealing threadpool loosely based off of pthreadpool

E CSE513: Parallel Runtimes for Modern Processors

© Vivek Kumar

I 1

Futures

A Non-actor re-implementation of Scala Futures.

ons.Dur

import com.t tion

import com. .util.{Await, Future, Promise}
al f = new Promise(Int]
1g = f.map { result => result + 1 }

lue(1)
result(g, 1.second) // => this blocks for the futures result (

f.5e

// Another option
g.onSuccess { resul
printin(result) /

1 xFuture = Future(1)
val yFuture = Future(2)

st Twitter

pial
println{x + y) //

=> prints "3"

Future interrupts

Method raise on Future (def raise(cause: Throwable)) raises the interrupt described by cause tothe
producer of this Future . Interrupt handlers are installed on a Promise using setInterruptHandler , which takes
a partial function:

val p = new Promise(T]
p.setInterruptHandler {

Interrupts differ in semantics from cancellation in important ways: there can only be one interrupt handler per
promise, and interrupts are only delivered if the promise is not yet complete.

Object Pool

The pool order is FIFO.

21

o sweoreemmmesmns
Reading Materials

® https://gee.cs.oswego.edu/dl/papers/i].pdf
® https://docs.kernel.org/scheduler/index.html

D

https://gee.cs.oswego.edu/dl/papers/fj.pdf
https://docs.kernel.org/scheduler/index.html

o sommeemmeswes
Next Lecture (#04)

® Context switching inside the user space
o Boost library

D

