Lecture 04: Context Switching
Inside the User Space

Vivek Kumar
Computer Science and Engineering
IIIT Delhi
vivekk@iiitd.ac.in

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Last Lecture (Recap)

Could assistin high
performance load-balancing
Of " n

Parallel Program
Compiler

Parallel Runtime

Operating System Could assistin high

performance load-

CPU || cPU Memory balancing of “

® Parallel runtime system
for task-scheduling
o Work-sharing
o Work-stealing

D

O eaecsomaswowomdvevesm ety
Today’s Class

=>® Threading models

® Boost C++ libraries for concurrency
o Context
o Introduction to Fibers

D

o lecueorConenSwingnsdeteUserSpace e
Multicore Parallel Programming Landscape

Requirement: Parallel
runtime system that
could schedule “tasks”

Parallel runtime system
that could schedule

et ean)
Threading Model

® 1x1 threading Model (Kernel Level Threads)
® MxN threading model (User Level Threads)

D

1x1 Threading Model

User Mode ® Every thread created by the
user has 1x1 mapping with
- N ~ the kernel thread
P P o E.g., pthread library on Linux
g g | @ OS manages all thread

operations

o Heavyweight operations
I I = Thread creation
\ N\ » y = Context switches
E\ //‘ o Scheduling policy solely
managed by the kernel

Kernel Mode

1D

Lecture 04: Context Switching inside the User Space (Part-1)

MxN Threading Model

User Mode

7

Process A

_

[

Process B

/

) 7
T —

Kernel Mode

E CSE513: Parallel Runtimes for Modern Processors

© Vivek Kumar

User gets to create several
threads, but each of these
threads can be mapped to a
single kernel level thread

o Some JVMs have been doing it

Runtime library (in user space)
manages all thread operations

o Lightweight operations fOS is
totally unaware of user level
thread operations)

= Thread creation
= Context switches

Flexible scheduling policies can
be implemented

O

O eaecsomaswowomdvevesm ety
Today’s Class

® Threading models

® Boost C++ libraries for concurrency

=» o Context
o Introduction to Fibers

D

C eoscomeeswemmgmssenetsrspsepant
Boost C++ Libraries

WELCOME TO BOOST.ORG!

Boost provides free peer-reviewed portable C++ source libraries.

We emphasize libraries that work well with the C++ Standard Library. Boost libraries are
intended to be widely useful, and usable across a broad spectrum of applications. The
Boost license encourages the use of Boost libraries for all users with minimal restrictions.

We aim to establish "existing practice" and provide reference implementations so that
Boost libraries are suitable for eventual standardization. Beginning with the ten Boost
Libraries included in the Library Technical Report (TR1) and continuing with every release
of the ISO standard for C++ since 2011, the C++ Standards Committee has continued to
rely on Boost as a valuable source for additions to the Standard C++ Library.

1D

Lecture 04: Context Switching inside the User Space (Part-1)

Boost Context Library

® Provides a sort of cooperative multitasking on a single
thread

® By providing an abstraction of the current execution state in
the current thread, a fcontext t instance represents a
specific point in the application's execution path
o stack (with local variables) Coroutines
o stack pointer
o all registers and CPU flags

o instruction pointer
® Provides the means to suspend the current execution path

and to transfer execution control, thereb%permitting
another fcontext tto run on the current thread

o Helps in extremely low latency context switchin? of execution inside
userspace (around 19 CPU cycles on x86_64 platform [1])

® Disadvantage
o Not supported on all platforms as based on assembly code

Documentation: https://www.boost.org/doc/libs/1_80_0/libs/context/doc/html/index.html [1] https://www.boost.org/doc/libs/1_80_0/libs/context/doc/html/context/performance.htmi#performance

Boost fcontext

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 9

Lecture 04: Context Switching inside the User Space (Part-1)

Boost Context: Only Two Low-level Core APIs

® Create new context
fcontext_t make context(/* pointer to top of new stack */,
[* size of the new stack */,
[* function to call when starting new context */);

® Jump to new context
void* jump_fcontext(/*current context */,
/* new context */,
[* some more arguments ... */);

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 10

Lecture 04: Context Switching inside the User Space (Part-1)

How to Handle Blocking Task?

/* thread local variable */
fcontext t* steal loop context;

void* worker_routine(void* args) {
steal loop context = make context(/* Method steal task from victim */);
jump_context(/* current context */, steal_loop_context);
}
steal task from victim(int wid) {
while(/* thread pool is active */) {
/* find and execute tasks */
}
}

get() {
future* f = get_current_future();

if(f->is_not_ready()) {
/* create/save current context and switch to steal loop context */

}

else return f->value;

4

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

/* User application */

void foo() {
future_t* future =

future.get();
}

11

Lecture 04: Context Switching inside the User Space (Part-1)

Boost Context C++11 Library

® Two primary operations

o callcc

= Call with current continuation

= Captures current continuation and triggers a context switch
o Resuming a saved continuation

= resumel()
. Can be used to switch across different continuations

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

12

T
Boost Context Library: Example

#include <boost/context/all.hpp>

void A() i) #include <boost/context/all.hpp> ® Figure-1
C$Ut<< M= <<*endl; ctx::continuation A(ctx::continuation cont) { IN-A
/* Do something */ cout<< “IN-A” << endl;
cout<< “OUT-A” << endl; cont = cont.resume(); OUT-A
¥ . /* Do something */ IN-B
void B() { cout<< “OUT-A” << endl; OUT-B
cout<< “IN-B” << endl; return std::move(cont); i
/* Do something */ } IN-C
cout<< “OUT-B” << endl; /* Methods B & C rewritten as A above */
} . . OouT-C
. int main() {
void C() { ctx::continuation a = ctx::callcc(A); ° Figure-2
cout<< IN'C_ << endl; ctx::continuation b = ctx::callcc(B); IN-A
/* Do something */ ctx::continuation ¢ = ctx::callcc(C);
cout<< “OUT-C” << endl; a.resume(); IN-B
} b.resume();
} , : IN-C
int main() { c Pesume()f Fi
. igure-2
AQ); } ’ 9 7 OUT-A
B(); OUT-B
} cO); Figure-1 OUT-C

4

O eaecsomaswowomdvevesm ety
Today’s Class

® Threading models

® Boost C++ libraries for concurrency

o Context
=» o Introduction to Fibers

D

C cweowCownsimgmsietesrspaco)
boost::fibers::fiber

® Afiberis a userland thread unlike the kernel thread (e.g., pthread maps 1x1 with
kernel thread in Linux)

o Several fibers can map with single pthread (M x N threading)

® Fiber emulates much of the std::thread
o Extends the concurrency taxonomy

. On a single computer, multiple processes can run
. Within a single process, multiple threads can run
. Within a single thread, multiple fibers can run

® Builds on top of boost::context
o Each fiber has its own stack, registers, instruction pointer..
. It means they can scheduled cooperatively

® Itis super easy to create a fiber
boost::fibers::fiber (F, [=]() { /Do something®/ }); // Spawns a fiber F

1P

Lecture 04: Context Switching inside the User Space (Part-1)

Fiber v/s Thread

® Athread can run only one fiber at a time
o Although several fibers can be queued up for execution at a thread
at any given time

® Creating several fibers by a single thread doesn’t imply
parallelism unlike creating several threads

o By default fibers created by a thread will run by that thread only,
but it can be detached to allow its execution at any other thread

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 16

Fiber Manager

D

® The fibers

In a thread

are

coordinated

by a fiber

manager

o The
manager
created/ma
naged
silently by
the fiber
library

Fiber Manager

o

Kernel thread

Suspended queue
Fiber Manager

Ready queue

Scheduling
algorithms

R

3

Kernel thread

Flber Manager

D

Similar to threads, a fiber can be in the running,
suspended or ready state

Fibers trade control with the manager in a
cooperative way

o boost::this_fiber::yield();
boost:this_fiber::sleep for
boost:this_fiber::sleep until
boost:fibers::mutex
boost:fibers::condition_variable
some_fiber.join()

These operations will
land the fiber into
which queue
(ready/suspended)?

0O O O O O

©)

Mana er uses a scheduling algorithm to select a
ready fiber to run (any similarity with Linux kernel?)

Manager carries out the context switch to swap
between the fibers

o Kernel thread blocks if there are no ready fibers

Suspended queue

Fiber Manager

Ready queue

Scheduling
algorithms

]
(o
(1)
=
atil
(on
(1)
=
b’
(o
(1)
=

=

Kernel thread

Lecture 04: Context Switching inside the User Space (Part-1)

Fiber Scheduler

® Manager uses a default round-robin scheduler
o Scheduling within a thread

® Boost fibers provides shared work and work_stealing as
alternative schedulers to round_robin
o Scheduling across the threads

® Boost fibers also allow creation of a custom scheduler

boost::fibers::use_scheduling algorithm<my_own_fiber_scheduler>();

void thread function() {
¥

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 19

O lcueorCowSwinngmsdeteUsrspere e
Fiber Context Switching is Extremely Fast

Table 1.3. time per thread (average over 10,000 - unable to spawn 1,000,000 threads)

pthread std::thread std: :async

54 us - 73 us 52 us-73 us 106 us - 122 us

Table 1.4. time per fiber (average over 1.000.000)

fiber (16C/32T, work stealing, tcmalloc) fiber (1C/1T, round robin, tcmalloc)

0.05 ys - 0.09 us 1.69 us-1.79 us

Source: https://www.boost.org/doc/libs/1_80_0/libs/fiber/doc/html/fiber/performance.htmi

D

T
Question

® Is there any difference(s) between calling future.get() /
future.wait() on a std::thread v/s a fiber?

D

C LewsOsComexSwichmgmseteUserSpacePartt)
C t. F. b o yp]/hat woutl_d be
e execution
reating Fibers ihe exeautior
two programs?
o Note that it’s

a single
#tdefine millisleep(x) std::this_thread::sleep for(std::chrono::milliseconds(a)) threadt.)
..... execution In
millisleep(500); each case
IS ESpL)E ® Note that both
programs are

using different

implementation
#include <boost/fiber/all.hpp> S Of Sleep

#define millisleep(x) boost::this fiber::sleep for(std::chrono::milliseconds(a)) o Fiber
boost::fibers::fiber f1 ([=]() { millisleep(500); }); // Fiber F1 launched hmaannda|geitr8
boost::fibers::fiber f2 ([=]() { millisleep(100); }); // Fiber F2 launched own sleep
fl1.join(); // Wait for termination of F1 but not the
f2.join(); // Wait for termination of F2 std sleep

Method call can be made directly instead of

passing lambda, e.g. f1(foo, p1, p2, p3), where
‘p’ are parameter to method ‘foo’

1P

O sweosomeoweomerebmspme e
Reading Materials

® Context
o https://www.boost.org/doc/libs/1 80 0/libs/context/doc/html/index.html

® Fibers
o https://www.boost.org/doc/libs/1 80 O/libs/fiber/doc/html/index.html

D

https://www.boost.org/doc/libs/1_80_0/libs/context/doc/html/index.html
https://www.boost.org/doc/libs/1_80_0/libs/fiber/doc/html/index.html

Lecture 04: Context Switching inside the User Space (Part-1)

Installing Boost Context and Fiber Library

®@ Install Boost

(@)

O
O
O

(@)

Bg%ps //boostorg.jfrog.io/artifactory/main/release/1.80.0/source/boost_1_80_
ar.gz

tar xvfz boost_1_80_0.tar.gz
cd ~/boost_1_80_0/

./bootstrap.sh —prefix=/absolute/path/to/boost-install ——with-
libraries= fiber, context

./b2 install

® Compile programs

(@)

g++ -03 —Iéabsolute/path/to/boost install/include L/absolute/path/to/boost—
1nsta11/11 Program.cpp —lboost_fiber —1lboost_context —-1pthread

® Execute programs

O
O

export LD_LIBRARY_PATH=/absolute/path/to/boost-install/lib:$LD_LIBRARY_PATH
./a.out

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 24

e T
Next Lecture (#05)

® Boost library for concurrency (contd.)
® Argobots runtime for User Level Threads (ULTs)

D

