
CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching
Inside the User Space

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Last Lecture (Recap)

1

● Parallel runtime system
for task-scheduling
o Work-sharing
o Work-stealing

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Today’s Class
● Threading models
● Boost C++ libraries for concurrency

o Context
o Introduction to Fibers

2

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Multicore Parallel Programming Landscape
● Newer tasks-based

programming models
o OpenMP tasks, HClib, TBB,

HPX, etc.
● Thread-based programming

model
o OpenMP work-sharing loops

§ Most popular
§ Being used extensively in

several real world applications
• Some of them were written

really long ago
• Hard to change to newer

programming models
• Nested thread creation

• Creates threads
exponentially

3
OpenMP picture source: https://www.mcs.anl.gov/~iwasaki/pdfs/papers/PACT2019_slides.pdf

Requirement: Parallel
runtime system that

could schedule “tasks”

Focus of this lecture:
Parallel runtime system

that could schedule
“threads”

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Threading Model
● 1x1 threading Model (Kernel Level Threads)
● MxN threading model (User Level Threads)

4

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

1x1 Threading Model

5

User Mode

Kernel Mode
Scheduler

Pr
oc

es
s

A

Pr
oc

es
s

B

● Every thread created by the
user has 1x1 mapping with
the kernel thread
o E.g., pthread library on Linux

● OS manages all thread
operations
o Heavyweight operations

§ Thread creation
§ Context switches

o Scheduling policy solely
managed by the kernel

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

MxN Threading Model

6

User Mode

Kernel Mode
Scheduler

Scheduler Scheduler

Pr
oc

es
s

A

Pr
oc

es
s

B

● User gets to create several
threads, but each of these
threads can be mapped to a
single kernel level thread
o Some JVMs have been doing it

● Runtime library (in user space)
manages all thread operations
o Lightweight operations (OS is

totally unaware of user level
thread operations)
§ Thread creation
§ Context switches

o Flexible scheduling policies can
be implemented

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Today’s Class
● Threading models
● Boost C++ libraries for concurrency

o Context
o Introduction to Fibers

7

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Boost C++ Libraries

8

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Boost Context Library
● Provides a sort of cooperative multitasking on a single

thread
● By providing an abstraction of the current execution state in

the current thread, a fcontext_t instance represents a
specific point in the application's execution path
o stack (with local variables)
o stack pointer
o all registers and CPU flags
o instruction pointer

● Provides the means to suspend the current execution path
and to transfer execution control, thereby permitting
another fcontext_t to run on the current thread
o Helps in extremely low latency context switching of execution inside

userspace (around 19 CPU cycles on x86_64 platform [1])
● Disadvantage

o Not supported on all platforms as based on assembly code

9

Documentation: https://www.boost.org/doc/libs/1_80_0/libs/context/doc/html/index.html [1] https://www.boost.org/doc/libs/1_80_0/libs/context/doc/html/context/performance.html#performance

Boost fcontext

Fibers Coroutines

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Boost Context: Only Two Low-level Core APIs
● Create new context

fcontext_t make_context(/* pointer to top of new stack */,
/* size of the new stack */,
/* function to call when starting new context */);

● Jump to new context
void* jump_fcontext(/*current context */,

/* new context */,
/* some more arguments … */);

10

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

How to Handle Blocking Task?

11

/* thread local variable */
fcontext_t* steal_loop_context;

void* worker_routine(void* args) {
steal_loop_context = make_context(/* Method steal_task_from_victim */);
jump_context(/* current context */, steal_loop_context);

}
steal_task_from_victim(int wid) {

while(/* thread pool is active */) {
/* find and execute tasks */

}
}
get() {

future* f = get_current_future();
if(f->is_not_ready()) {

/* create/save current context and switch to steal_loop_context */
}
else return f->value;

}

/* User application */
.......
void foo() {

future_t* future =
async(.......);

future.get();
}

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Boost Context C++11 Library
● Two primary operations

o callcc
§ Call with current continuation
§ Captures current continuation and triggers a context switch

o Resuming a saved continuation
§ resume()

• Can be used to switch across different continuations

12

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Boost Context Library: Example
● Figure-1

IN-A

OUT-A

IN-B

OUT-B

IN-C

OUT-C

● Figure-2

IN-A

IN-B

IN-C

OUT-A

OUT-B

OUT-C

13

#include <boost/context/all.hpp>
void A() {

cout<< “IN-A” << endl;
/* Do something */
cout<< “OUT-A” << endl;

}
void B() {

cout<< “IN-B” << endl;
/* Do something */
cout<< “OUT-B” << endl;

}
void C() {

cout<< “IN-C” << endl;
/* Do something */
cout<< “OUT-C” << endl;

}
int main() {

A();
B();
C();

}

#include <boost/context/all.hpp>
ctx::continuation A(ctx::continuation cont) {

cout<< “IN-A” << endl;
cont = cont.resume();
/* Do something */
cout<< “OUT-A” << endl;
return std::move(cont);

}
/* Methods B & C rewritten as A above */
int main() {

ctx::continuation a = ctx::callcc(A);
ctx::continuation b = ctx::callcc(B);
ctx::continuation c = ctx::callcc(C);
a.resume();
b.resume();
c.resume();

}

Figure-1

Figure-2

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Today’s Class
● Threading models
● Boost C++ libraries for concurrency

o Context
o Introduction to Fibers

14

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

boost::fibers::fiber
● A fiber is a userland thread unlike the kernel thread (e.g., pthread maps 1x1 with

kernel thread in Linux)
o Several fibers can map with single pthread (M x N threading)

● Fiber emulates much of the std::thread
o Extends the concurrency taxonomy

§ On a single computer, multiple processes can run
§ Within a single process, multiple threads can run
§ Within a single thread, multiple fibers can run

● Builds on top of boost::context
o Each fiber has its own stack, registers, instruction pointer..

§ It means they can scheduled cooperatively

● It is super easy to create a fiber
boost::fibers::fiber (F, [=]() { /*Do something*/ }); // Spawns a fiber F

15

Fiber Fiber Fiber Fiber Fiber Kernel thread

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Fiber v/s Thread
● A thread can run only one fiber at a time

o Although several fibers can be queued up for execution at a thread
at any given time

● Creating several fibers by a single thread doesn’t imply
parallelism unlike creating several threads
o By default fibers created by a thread will run by that thread only,

but it can be detached to allow its execution at any other thread

16

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Fiber Manager

17

Fiber

Kernel thread

Fiber
Fiber

Fiber

Fiber
Fiber

Fiber

Fiber
Fiber Manager

Scheduling
algorithms

Ready queue

Suspended queue

Running queue

Fiber

Kernel thread

Fiber
Fiber

Fiber

Fiber
Fiber

Fiber

Fiber

Fiber Manager● The fibers
in a thread
are
coordinated
by a fiber
manager
o The

manager
created/ma
naged
silently by
the fiber
library

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Fiber Manager
● Similar to threads, a fiber can be in the running,

suspended or ready state
● Fibers trade control with the manager in a

cooperative way
o boost::this_fiber::yield();
o boost:this_fiber::sleep_for
o boost:this_fiber::sleep_until
o boost:fibers::mutex
o boost:fibers::condition_variable
o some_fiber.join()
o ….

● Manager uses a scheduling algorithm to select a
ready fiber to run (any similarity with Linux kernel?)

● Manager carries out the context switch to swap
between the fibers
o Kernel thread blocks if there are no ready fibers

18

These operations will
land the fiber into

which queue
(ready/suspended)?

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Fiber Scheduler
● Manager uses a default round-robin scheduler

o Scheduling within a thread
● Boost fibers provides shared_work and work_stealing as

alternative schedulers to round_robin
o Scheduling across the threads

● Boost fibers also allow creation of a custom scheduler

19

void thread_function() {
boost::fibers::use_scheduling_algorithm<my_own_fiber_scheduler>();

}

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Fiber Context Switching is Extremely Fast

20

Source: https://www.boost.org/doc/libs/1_80_0/libs/fiber/doc/html/fiber/performance.html

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Question
● Is there any difference(s) between calling future.get() /

future.wait() on a std::thread v/s a fiber?

21

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Creating Fibers

22

#include <boost/fiber/all.hpp>
#define millisleep(x) boost::this_fiber::sleep_for(std::chrono::milliseconds(a))
.....
boost::fibers::fiber f1 ([=]() { millisleep(500); }); // Fiber F1 launched
boost::fibers::fiber f2 ([=]() { millisleep(100); }); // Fiber F2 launched
f1.join(); // Wait for termination of F1
f2.join(); // Wait for termination of F2

#define millisleep(x) std::this_thread::sleep_for(std::chrono::milliseconds(a))
.....
millisleep(500);
millisleep(100);

● What would be
the execution
time of these
two programs?
o Note that it’s

a single
thread
execution in
each case

● Note that both
programs are
using different
implementation
s of sleep
o Fiber

manager
handle its
own sleep,
but not the
std sleep

Method call can be made directly instead of
passing lambda, e.g. f1(foo, p1, p2, p3), where

‘p’ are parameter to method `foo’

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Reading Materials
● Context

o https://www.boost.org/doc/libs/1_80_0/libs/context/doc/html/index.html
● Fibers

o https://www.boost.org/doc/libs/1_80_0/libs/fiber/doc/html/index.html

23

https://www.boost.org/doc/libs/1_80_0/libs/context/doc/html/index.html
https://www.boost.org/doc/libs/1_80_0/libs/fiber/doc/html/index.html

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Installing Boost Context and Fiber Library
● Install Boost

o wget
https://boostorg.jfrog.io/artifactory/main/release/1.80.0/source/boost_1_80_
0.tar.gz

o tar xvfz boost_1_80_0.tar.gz
o cd ~/boost_1_80_0/
o ./bootstrap.sh --prefix=/absolute/path/to/boost-install --with-

libraries=fiber,context
o ./b2 install

● Compile programs
o g++ -O3 -I/absolute/path/to/boost-install/include -L/absolute/path/to/boost-

install/lib Program.cpp –lboost_fiber –lboost_context -lpthread
● Execute programs

o export LD_LIBRARY_PATH=/absolute/path/to/boost-install/lib:$LD_LIBRARY_PATH
o ./a.out

24

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 04: Context Switching inside the User Space (Part-1)

Next Lecture (#05)
● Boost library for concurrency (contd.)
● Argobots runtime for User Level Threads (ULTs)

25

