Lecture 05: Boost Fibers and
Argobots

Vivek Kumar
Computer Science and Engineering
IIIT Delhi
vivekk@iiitd.ac.in

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Last Lecture (Recap) _

Fiber Manager
User Mode User Mode #include <boost/context/all.hpp> _g

ctx::continuation A(ctx::continuation cont) { n
Q D cout<< “IN-A” << endl; ®
D D cont = cont.resume();
/* Do something */
cout<< “OUT-A” << endl; g
v return std::move(cont); a’a :
} 5
l\ /* Methods B & C rewritten as A above */ =

int main() {
ctx::continuation a = ctx::callcc(A);
ctx::callcc(B);

Kernel Mode Kernel Mode ctx::continuation b
ctx::continuation ¢ = ctx::callcc(C);
a.resume();
b.resume();

c.resume();
' U LT V /S KLT } 7 Kernel thread

® Boost context
@ Used for capturing execution state in

Ready queue —

Scheduling
algorithms

Process A
Process B
Process A
Process B

-]
A
|
EIEE

| 19914 || 1Rq14 || JEL[E ||

| ‘a‘;“:‘ | | J : ‘ ‘| : ||

=

I~m

current thread gstack, registers, etc.) : :
:) =/ #include <boost/fiber/all.hpp>

and then Jump oa dlﬂ:erent exeCUtlon #define millisleep(x) boost::this fiber::sleep for(std::chrono::milliseconds(a))

state on current thread (cooperative |

mu|t|task|ng) boost::fibers::fiber f1 ([=]() { millisleep(500); }); // Fiber F1 launched
boost::fibers::fiber f2 ([=]() { millisleep(100); }); // Fiber F2 launched

H f1.join(); // Wait for termination of F1
' BOOSt flberS f2.join(); // Wait for termination of F2 7
e Emulates std::thread operations, but
as a ULT instead of a
. Based on boost context

1P

o eaecsomswowomvevesm e
Today’s Class

=>® Boost C++ libraries for concurrency

o Fibers (Contd.)
o Introduction to Coroutines

® Argobots library

D

O loueosconensvinmsmsienebrspece Pen2)
Fiber Futures

uint64_t fib(uint64_t n) {

if(n<2 ® \Which of
r(‘etug‘n{n; these
o progroms
std: :future<uint6e4_t> f1 (std::async([=](){ return fib(n-1); })); faster?
std: :future<uinte4_t> f2 (std::async([=](){ return fib(n-2); }));)
//get will block until result is ready ® \Which of
return fl.get() + f2.get(); these
} rograms is
} 7 4 pgrallel
program?
uint64_t fib(uint64 t n) {
if(n<2) {
return n;
} else {

boost::fibers::future<uint64_t> f1 (boost::fibers::async([=](){ return fib(n-1); }));
boost::fibers::future<uint64_t> f2 (boost::fibers::async([=](){ return fib(n-2); }));
//get will block until result is ready

return fl.get() + f2.get();

} 7
D

Lecture 05: Context Switching inside the User Space (Part-2)

Yielding Fibers

boost: :ibers: : fiber f1([=]() { ® yield() saves the context
;gg:tffth?s_%iber‘: ryield(); Of Currently runnlng flber’
cout << “B 7 and places it inside the
boost::this fiber::yield(); rea y queue
cout << “C 7; .

b o Manager can schedule it

o again based on the

peilbede e scheduling algorithm
o, e yAeld s ® \What will be the output of
boost::this fiber::yield(); thlS pI’Ogram'?
cout << “F ”;

})s

f1.join();

f2.join(); 7

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 4

Lecture 05: Context Switching inside the User Space (Part-2)

Producer-Consumer using Fibers

boost::fibers: :mutex mtx;

boost::F::Lber‘s::condition_var'iable cnd; . F|ber F1 mOVIng Into
std::string str;
suspended queue, and
boost::fibers::fiber f1([= .
§td::unigue_lock<boos’EE:11:§Ll2>e£s::mutex> lck(mtx); then baCk Into ready
et queue after a notify
zo t << str << endl; from F2
1 ’ o Single thread execution!

boost::fibers::fiber f2([=]() {
std::unique_lock<boost::fibers::mutex> lck(mtx);

str = “Hello Fiber”;
cnd.notify one();

1)

f1.join();
f2.join(); 7

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 5

Fiber Pitfalls

std: :mutex mtx;
std::condition_variable cnd;
std::string str;

boost::fibers::fiber f1([=]() {
std::unique_lock<std: :mutex> lck(mtx);
if(str.size() == 0) {
cnd.wait(1lck);
}

cout << str << endl;

})s

boost::fibers::fiber f2([=]() {
std::unique_lock<std: :mutex> lck(mtx);
str = “Hello Fiber”;
cnd.notify one();

})s

fl1.join();
f2.join();

4

® Can you spot the
difference?

o What effect it would
cause, and why?

D

o lcueosCoveSwinngmsdeteUsrspere e
Work-Stealing Scheduling of Fibers (1/3)

® Main thread

// mutex and condition variable for shutdown o Manages the
boost::fibers::mutex mtx; (3rE§Eati()r] Ear](j
boost::fibers::condition_variable cnd; . .

int pool_size; tEBrrT1|r]Eit|()r] ()f

int main() { thread pOOI

// Step-1: Launch poolTsue-l.number‘ ?F workers calling wor‘ker'_r'outlne O Create the top_
// Step-2: Set scheduling policy at fiber manager

boost::fibers::use_scheduling_algorithm |eve| f|ber W|th
<boost::fibers::algo::work _stealing>(pool_size); r

// Step-3: Handshake with each of the spawned workers use

// Step-4: Launch compute kernel having fiber based concurrency (3()rT]F)lJtEati()r]

int result = compute_kernel(/*some input*/);
// Step-5: Shutdown the thread pool
std::unique_lock<boost::fibers: :mutex> lck(mtx);

cnd.notify all();
} 4
[P

Lecture 05: Context Switching inside the User Space (Part-2)

Work-Stealing Scheduling of Fibers (2/3)

® \Worker routine

// mutex and condition variable for shutdown
boost::fibers::mutex mtx;
boost::fibers::condition_variable cnd;

int pool_size;

void worker_ routine(int id) {

boost: :fibers::use_scheduling_algorithm
// Step-2: Handshake with the master worker

std::unique_lock<boost::fibers::mutex> lck(mtx);
cnd.wait(1lck);

// Step-1: Set scheduling policy at fiber manager
<boost::fibers::algo::work stealing>(pool size);

// Step-3: Suspend current fiber until master signals

4

E CSE513: Parallel Runtimes for Modern Processors

© Vivek Kumar

O

Each worker will
have a pool of
fibers instead of
tasks

Fiber manager at
each worker
would use
Boost’s inbuilt
work-stealing
algorithm for
dynamic load
balancing of
fibers across
workers

Lecture 05: Context Switching inside the User Space (Part-2)

Work-Stealing Scheduling of Fibers (3/3)

® Computation

int compute_kernel(int arg) { kernel
// Step-1: Wrap callable target to asynchronously compute the return value 0) |t can
boost: :fibers::packaged_task<int()> task([=]() { recurSNer
// Launch computation that may also recursively spawn more fibers Create more
return value; flbers that
S s, | | | would
p-2: Get the future object associated with the above target
boost::fibers::future<int> future = task.get future(); articipate in
// Step-3: Spawn the fiber and detach it to enable work-stealing hrea OOI
boost::fibers::fiber(std::move(task)).detach(); based WOrk-
// Step-4: Wait for the fiber to complete Steallng
return future.get(); o Fibers intended
) 7 to participate in
work-stealing
must be
detached

Details on fibers packaged_task and future: https://www.boost.org/doc/libs/1_80_0/libs/fiber/doc/htmi/fiber/synchronization/futures.html

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Fiber Overheads / Limitations

® Language restriction

o Fiber library requires C++11

o Cannot be used in C-based HPC
libraries/programs

50 : :
~ 0 ® (Serious) Runtime overheads

g 40 o Graph shown for calculating recursive

2 20 Fibonacci that spawns detached fiber for

° every recursive call until threshold reached
£ 20 (n<1

S = Total nested fibers created

3 10 3.1 PUIE Fib [30, 57K], Fib [35, 635K], Fib [40, 7049K]
& 0 03 o o Single worker used!

Fib(30) Fib(35) Fib(40) Fib(45) o Platform details

. AMD EPYC 7551 32-core processor
. Ubuntu 18.04.3 LTS
. GCC version 7.5.0
-O3 flag used
. Boost version 1_80 0

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 10

Lecture 05: Context Switching inside the User Space (Part-2)

Coroutine v/s Fiber: Brief Overview

® Coroutines are like functions which allow suspending and
resuming execution at certain locations

o Preserves the local state of execution and allows re-entering the
function more than once

o Control is passed to the caller once a coroutine yields

® Coroutines do not resemble threads
o Cannot synchronize across coroutines
o Coroutine library provides no schedule

® Coroutine cannot outlive its invoker

o Calling code instantiates a coroutine, passes control back and forth
with it for some time, and then destroys it

= |nvoker can call it in any order

More info: https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4024.pdf
E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

11

o eaecsomswowomvevesm e
Today’s Class

® Boost C++ libraries for concurrency

o Fibers (Contd.)
o Introduction to Coroutines

=>® Argobots library

D

Lecture 05: Context Switching inside the User Space (Part-2)

Alternative to Fibers: Options

Qthreads
MassiveThreads
Maestro
Nanos++
StackThreads

Argobots

o Latest in the arsenal

o Open sourced

o High performance!

o C-based implementation

E CSE513: Parallel Runtimes for Modern Processors

To get a broad overview of all these
alternatives, you can read the following paper:
https://ieeexplore.ieee.org/document/7776544

© Vivek Kumar

13

Lecture 05: Context Switching inside the User Space (Part-2)

ArgObOts Argobots A Lightweight, Low-Level Threading and

@ argobots.or
_— , , Tasking Framework
. - . - Sangmin Seo” Abdelhalim Amer® Pavan Balaji® Cyril Bordage' George Bosilca!
ArQObOts' A nghtwelght Low-level Threadlng Alex Brooks! Adridn Castell6® Damien Genet! Thomas Herault! Prateek Jindal®
Framework Laxmikant V. Kalé" Sriram KrishnamoorthyY Jonathan Lifflander! Huiwei Lul

Esteban Meneses** Marc Snir* Yanhua Sun’ Pete Beckman*

* Argonne National Laboratory, {sseo,aamer,balaji,snir,beckman}@anl.gov
t University of Illinois at Urbana-Champaign, {cbordage,brooks8, jindal2,kale,jliff12,sun51}@illinois.edu
t University of Tennessee, Knoxville, {bosilca,dgenet, herault}@lcl utk.edu
§ Universitat Jaume I, adcastel@uji.es 9 Pacific Northwest National Laboratory, sriram@pnnl.gov
Social Network Group, Tencent, huiweilv@tencent.com ** Costa Rica Institute of Technology,
emeneses@ic-itcr.ac.cr

Argobots is a lightweight runtime system that supports integrated
computation and data movement with massive concurrency. It will
directly leverage the lowest-level constructs in the hardware and OS:
lightweight notification mechanisms, data movement engines,
memory mapping, and data placement strategies.

Abstract—In this paper, we present a lightweight, low-level 1555 2m== dcza 6omms 80— 10— 12 === 14 =
reading and tasking framework, called Argobots, to support 5 ** 10
. : ; . 1assive on-node parallelism. Unlike other threading models, % =
Argobots is used by numerous industrial and academic collaborators FINALIST e milies e e sfioat Twrsai wen tobime: B W £
. [+ 4
such as Intel, The HDF group, RKEN, and BSC. = GO e ws
- 8
chosen as a finalist for the 2020 R&D 100 Awards. O Product - Team Enterprise Explore ~ Marketplace Pricing Search Sign%’ T
10° 2
& pmodels / argobots Public 0 Notifications % Fork 36 s
<> Code (») Issues 17 19 Pullrequests 2 () Discussions () Actions [Wiki (@ Security [~ Insights
¥ main ~ ¥ 2branches © 11tags Go to file Code ~ About
Official Argobots Repository
ﬁ shintaro-iwasaki Merge pull request #374 from bfaccini/ULT-stacks-dump_ti... - + dce6e72 on 27 Jan ‘1,917 commits
@ www.argobots.org
.github github: add a PR template 2 years ago C fpc threading
B doc Added images for the wiki 6 years ago
0 Readme
[examples examples/fibonacci: print execution time 13 months ago ¢ 82 stars
—
E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 14
-

Lecture 05: Context Switching inside the User Space (Part-2)

Argobots

® Supports M x N threading model similar to boost::fibers
o C language based implementation built on top of pthreads

o Designed to be used as underlying threading and tasking library
for high-level runtimes of languages

® Uses Boost fcontext for context switches across
lightweight user-level threads

® Supports flexible scheduling techniques

o Although, such a policy could be implemented by creating a
customized scheduling policy for boost::fibers [1]

[1] https://www.boost.org/doc/libs/1_80_0/libs/fiber/doc/html/fiber/custom.html
CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

15

o eaemowememerebmsme e
Argobots: Programming Model

#tdefine N 100

void example(){
printf(“Hello\n”);

}

int main(){
initialization();

for(int i=0; i<N; i++)
ULT creation_to(example, dest);

for(int i=0; i<N; i++) {
ULT join();
UTL_fr‘ee();a

}

finalize() °
}

Environment Initialization

ULT/Tasklet creation

ULT/Tasklet join

ULT/Tasklet free

Environment Finalization

1P

Lecture 05: Context Switching inside the User Space (Part-2)

Argobots: Execution Model

ES, ES,

ESn

O EH & O

Scheduler Pool ULT Tasklet Event

E CSE513: Parallel Runtimes for Modern Processors

® Two levels of parallelism
o Execution Stream (ES)
. Each mapped to a single pthread
o Work units

. User Level Threads (ULTs)
. Tasklets

® ULTs
o Similar to boost fibers
o Have their own stack
o Can cooperatively yield to ES or another ULT

® Tasklets
o Similar to HCIib’s async or OpenMP task
o Borrows the stack of host ES

o Cannot explicitly yield but run to completion
before returning control to the host E

. No concurrent execution of work units in a
single ES

" Migratable unless stored inside a private pool

© Vivek Kumar 17

Lecture 05: Context Switching inside the User Space (Part-2)

Argobots: Schedule

ES,

ESn

@ O

Scheduler Pool ULT Tasklet Event

E CSE513: Parallel Runtimes for Modern Processors

r

Each ES can have its own scheduler (S, in
the figure)

A scheduler is associated with one or more
ools of “ready” work units (Py41 in Syy4 and

M21s P2z IN Syp)

Pools can be private or shared with other
ES (P, is shared pool)

Event pool (E) stores lightweight
notification events (e.g., message from
remote node)

Supports stackable scheduling framework

with pluggable strategies

o E:ﬁi,lallowing switching between a scheduler
Wi

ow priority work units and another
scheduler with high priority work units

o Syand S, in Py are stacked schedulers, which
will be executed by the main scheduler Sy,

© Vivek Kumar 18

Lecture 05: Context Switching inside the User Space (Part-2)

Argobots: Primitive Opgr

2 22 ESZ ESn
Scheduler Pool ULT Tasklet Event

E CSE513: Parallel Runtimes for Modern Processors

ations for Work Units

Creation, join, and migration

o Supported for both ULT and tasklets

o Tasklets can migrate only if they haven't started
execution

Yield (only for ULTs)

o When a ULT yields control, the control goes to
the scheduler that was in charge of scheduling
in the ES at the point of yield time

o ULTs must cooperatively yield control in order to
enable progress of other work units

Yield_to

o When a ULT calls yield to, it yields control to a
specific ULT instead of the sCheduler

. Eliminates the overhead of context switchinq_
to the scheduler and scheduling another UL
Synchronization (only for UTLS)

o Mutex, condition variable, future, and barrier are
supported (also supported by boost fibers)

o ULT calling a blocking Argobots operation is
context switched

© Vivek Kumar 19

Lecture 05: Context Switching inside the User Space (Part-2)

Programming with Argobots

® Demo

o https://github.com/pmodels/argobots/blob/main/examples/hello_wo
rld/hello_world.c
https://github.com/pmodels/argobots/blob/main/examples/fibonacci
/fibonacci.c

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

21

Argobots v/s Fiber

[HEY
o
o

Speedup over Fiber Version
=
o

[HEY

Fib(30)

Fib(35)

Fib(40)

1P

S

Graph shown for calculating recursive .
Fibonacci that spawns task for every recursive
call until threshold reached (n<10)

@)
@)
@)

©)

In the Boost version, every task is a detached fiber
In the Argobots version, every task is an ULT

Both version uses work-stealing scheduler
(although its of no effect as single worker)

Fib(45) execution
. Crashes with Fibers
. Took 13.1 seconds with Argobots

Single worker used in each case
Platform details

AMD EPYC 7551 32-core processor
Ubuntu 18.04.3 LTS

GCC version 7.5.0

. -O3 flag used

Boost version 1_80 0

Argobots commit id dce6e72

Reading Materials

® Argobots

o http://pavanbalaji.qithub.io/pubs/2018/tpds/tpds18.argobots.pdf
o https://www.argobots.org/

® Fibers
o https://www.boost.org/doc/libs/1 80 O/libs/fiber/doc/html/index.html

D

http://pavanbalaji.github.io/pubs/2018/tpds/tpds18.argobots.pdf
https://www.argobots.org/
https://www.boost.org/doc/libs/1_80_0/libs/fiber/doc/html/index.html

O sosscmesemmenteseeeny
Next Lecture (L #06)

® Managing Overheads from Blocking Tasks & Deques

D

