
CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Boost Fibers and 
Argobots

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Last Lecture (Recap)

1

● ULT v/s KLT
● Boost context

o Used for capturing execution state in 
current thread (stack, registers, etc.), 
and then jump to a different execution 
state on current thread (cooperative 
multitasking)

● Boost fibers
o Emulates std::thread operations, but 

as a ULT instead of a KLT
§ Based on boost context



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Today’s Class
● Boost C++ libraries for concurrency

o Fibers (Contd.)
o Introduction to Coroutines

● Argobots library

2



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Fiber Futures

3

● Which of 
these 
programs 
would be 
faster?

● Which of 
these 
programs is 
a parallel 
program?

uint64_t fib(uint64_t n) {
if(n<2) {

return n;
} else {

boost::fibers::future<uint64_t> f1 (boost::fibers::async([=](){ return fib(n-1); }));
boost::fibers::future<uint64_t> f2 (boost::fibers::async([=](){ return fib(n-2); }));
//get will block until result is ready
return f1.get() + f2.get();

}
}

uint64_t fib(uint64_t n) {
if(n<2) {

return n;
} else {

std::future<uint64_t> f1 (std::async([=](){ return fib(n-1); }));
std::future<uint64_t> f2 (std::async([=](){ return fib(n-2); }));
//get will block until result is ready
return f1.get() + f2.get();

}
}



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Yielding Fibers

4

● yield() saves the context 
of currently running fiber, 
and places it inside the 
ready queue
o Manager can schedule it 

again based on the 
scheduling algorithm

● What will be the output of 
this program?

boost::fibers::fiber f1([=]() {
cout << “A ”;
boost::this_fiber::yield();
cout << “B ”;
boost::this_fiber::yield();
cout << “C ”;

});

boost::fibers::fiber f2([=]() {
cout << “D ”;
boost::this_fiber::yield();
cout << “E ”;
boost::this_fiber::yield();
cout << “F ”;

});

f1.join();
f2.join();



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Producer-Consumer using Fibers

5

● Fiber F1 moving into 
suspended queue, and 
then back into ready 
queue after a notify 
from F2
o Single thread execution!

boost::fibers::mutex mtx;
boost::fibers::condition_variable cnd;
std::string str;

boost::fibers::fiber f1([=]() {
std::unique_lock<boost::fibers::mutex> lck(mtx);
if(str.size() == 0) {

cnd.wait(lck);
}
cout << str << endl;

});

boost::fibers::fiber f2([=]() {
std::unique_lock<boost::fibers::mutex> lck(mtx);
str = “Hello Fiber”;
cnd.notify_one();

});

f1.join();
f2.join();



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Fiber Pitfalls

6

● Can you spot the 
difference?
o What effect it would 

cause, and why?

std::mutex mtx;
std::condition_variable cnd;
std::string str;

boost::fibers::fiber f1([=]() {
std::unique_lock<std::mutex> lck(mtx);
if(str.size() == 0) {

cnd.wait(lck);
}
cout << str << endl;

});

boost::fibers::fiber f2([=]() {
std::unique_lock<std::mutex> lck(mtx);
str = “Hello Fiber”;
cnd.notify_one();

});

f1.join();
f2.join();



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Work-Stealing Scheduling of Fibers (1/3)
● Main thread 

o Manages the 
creation and 
termination of 
thread pool

o Create the top-
level fiber with 
user 
computation

7

// mutex and condition variable for shutdown
boost::fibers::mutex mtx;
boost::fibers::condition_variable cnd;
int pool_size;

int main() {
// Step-1: Launch pool_size-1 number of workers calling “worker_routine”
// Step-2: Set scheduling policy at fiber manager
boost::fibers::use_scheduling_algorithm

<boost::fibers::algo::work_stealing>(pool_size);
// Step-3: Handshake with each of the spawned workers
// Step-4: Launch compute kernel having fiber based concurrency
int result = compute_kernel(/*some input*/);
// Step-5: Shutdown the thread pool
std::unique_lock<boost::fibers::mutex> lck(mtx);
cnd.notify_all();

}



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Work-Stealing Scheduling of Fibers (2/3)
● Worker routine

o Each worker will 
have a pool of 
fibers instead of 
tasks

o Fiber manager at 
each worker 
would use 
Boost’s inbuilt 
work-stealing 
algorithm for 
dynamic load 
balancing of 
fibers across 
workers

8

// mutex and condition variable for shutdown
boost::fibers::mutex mtx;
boost::fibers::condition_variable cnd;
int pool_size;
void worker_routine(int id) {

// Step-1: Set scheduling policy at fiber manager
boost::fibers::use_scheduling_algorithm

<boost::fibers::algo::work_stealing>(pool_size);
// Step-2: Handshake with the master worker
// Step-3: Suspend current fiber until master signals
std::unique_lock<boost::fibers::mutex> lck(mtx);
cnd.wait(lck);

}



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Work-Stealing Scheduling of Fibers (3/3)
● Computation 

kernel
o It can 

recursively 
create more 
fibers that 
would 
participate in 
thread pool 
based work-
stealing 

o Fibers intended 
to participate in 
work-stealing 
must be 
detached

9

int compute_kernel(int arg) {
// Step-1: Wrap callable target to asynchronously compute the return value
boost::fibers::packaged_task<int()> task([=]() {

// Launch computation that may also recursively spawn more fibers
return value;

});
// Step-2: Get the future object associated with the above target
boost::fibers::future<int> future = task.get_future();
// Step-3: Spawn the fiber and detach it to enable work-stealing
boost::fibers::fiber(std::move(task)).detach();
// Step-4: Wait for the fiber to complete
return future.get();

}

Details on fibers packaged_task and future: https://www.boost.org/doc/libs/1_80_0/libs/fiber/doc/html/fiber/synchronization/futures.html



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Fiber Overheads / Limitations
● Language restriction

o Fiber library requires C++11
o Cannot be used in C-based HPC 

libraries/programs
● (Serious) Runtime overheads

o Graph shown for calculating recursive 
Fibonacci that spawns detached fiber for 
every recursive call until threshold reached 
(n<10)
§ Total nested fibers created

• Fib [30, 57K], Fib [35, 635K], Fib [40, 7049K]
o Single worker used!
o Platform details

§ AMD EPYC 7551 32-core processor
§ Ubuntu 18.04.3 LTS 
§ GCC version 7.5.0

• -O3 flag used
§ Boost version 1_80_0

10

0

10

20

30

40

50

Fib(30) Fib(35) Fib(40) Fib(45)

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

0.3
3.1

39



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Coroutine v/s Fiber: Brief Overview
● Coroutines are like functions which allow suspending and 

resuming execution at certain locations
o Preserves the local state of execution and allows re-entering the 

function more than once
o Control is passed to the caller once a coroutine yields

● Coroutines do not resemble threads
o Cannot synchronize across coroutines
o Coroutine library provides no schedule

● Coroutine cannot outlive its invoker
o Calling code instantiates a coroutine, passes control back and forth 

with it for some time, and then destroys it
§ Invoker can call it in any order

11

More info: https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4024.pdf



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Today’s Class
● Boost C++ libraries for concurrency

o Fibers (Contd.)
o Introduction to Coroutines

● Argobots library

12



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

● Qthreads
● MassiveThreads
● Maestro
● Nanos++
● StackThreads
● …..
● Argobots

o Latest in the arsenal
o Open sourced
o High performance!
o C-based implementation

13

Alternative to Fibers: Options

To get a broad overview of all these 
alternatives, you can read the following paper: 
https://ieeexplore.ieee.org/document/7776544



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Argobots

14



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Argobots
● Supports M x N threading model similar to boost::fibers

o C language based implementation built on top of pthreads
o Designed to be used as underlying threading and tasking library 

for high-level runtimes of languages

● Uses Boost fcontext for context switches across 
lightweight user-level threads

● Supports flexible scheduling techniques
o Although, such a policy could be implemented by creating a 

customized scheduling policy for boost::fibers [1]

15
[1] https://www.boost.org/doc/libs/1_80_0/libs/fiber/doc/html/fiber/custom.html



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Argobots: Programming Model

16

#define N 100

void example(){
printf(“Hello\n”);

}

int main(){
initialization();

for(int i=0; i<N; i++)
ULT_creation_to(example, dest);

for(int i=0; i<N; i++) {
ULT_join();
UTL_free();

}

finalize()
}

1

2

3

4

5

1

2

3

4

5

Environment Initialization

ULT/Tasklet creation

ULT/Tasklet join

ULT/Tasklet free

Environment Finalization



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Argobots: Execution Model

17

● Two levels of parallelism
o Execution Stream (ES) 

§ Each mapped to a single pthread
o Work units

§ User Level Threads (ULTs)
§ Tasklets

● ULTs
o Similar to boost fibers
o Have their own stack
o Can cooperatively yield to ES or another ULT

● Tasklets
o Similar to HClib’s async or OpenMP task
o Borrows the stack of host ES
o Cannot explicitly yield but run to completion 

before returning control to the host ES
§ No concurrent execution of work units in a 

single ES
§ Migratable unless stored inside a private pool



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Argobots: Scheduler

18

● Each ES can have its own scheduler (SM in 
the figure)

● A scheduler is associated with one or more 
pools of “ready” work units (PM11 in SM1 and 
PM21, PM22 in SM2)

● Pools can be private or shared with other 
ES (Ps is shared pool)

● Event pool (E) stores lightweight 
notification events (e.g., message from 
remote node)

● Supports stackable scheduling framework 
with pluggable strategies
o E.g., allowing switching between a scheduler 

with low priority work units and another 
scheduler with high priority work units

o S1 and S2 in PM11 are stacked schedulers, which 
will be executed by the main scheduler SM1



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Argobots: Primitive Operations for Work Units

19

● Creation, join, and migration
o Supported for both ULT and tasklets
o Tasklets can migrate only if they haven’t started 

execution
● Yield (only for ULTs)

o When a ULT yields control, the control goes to 
the scheduler that was in charge of scheduling 
in the ES at the point of yield time 

o ULTs must cooperatively yield control in order to 
enable progress of other work units 

● Yield_to
o When a ULT calls yield to, it yields control to a 

specific ULT instead of the scheduler 
§ Eliminates the overhead of context switching 

to the scheduler and scheduling another ULT

● Synchronization (only for UTLs)
o Mutex, condition variable, future, and barrier are 

supported (also supported by boost fibers)
o ULT calling a blocking Argobots operation is 

context switched



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Programming with Argobots
● Demo

o https://github.com/pmodels/argobots/blob/main/examples/hello_wo
rld/hello_world.c
https://github.com/pmodels/argobots/blob/main/examples/fibonacci
/fibonacci.c

21



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Argobots v/s Fibers

22

1

10

100

Fib(30) Fib(35) Fib(40)

Sp
ee

du
p 

ov
er

 F
ib

er
 V

er
si

on

18.7x
27.2x

33x

● Graph shown for calculating recursive 
Fibonacci that spawns task for every recursive 
call until threshold reached (n<10)
o In the Boost version, every task is a detached fiber
o In the Argobots version, every task is an ULT
o Both version uses work-stealing scheduler 

(although its of no effect as single worker)
o Fib(45) execution

§ Crashes with Fibers
§ Took 13.1 seconds with Argobots

● Single worker used in each case
● Platform details

o AMD EPYC 7551 32-core processor
o Ubuntu 18.04.3 LTS 
o GCC version 7.5.0

§ -O3 flag used
o Boost version 1_80_0
o Argobots commit id dce6e72



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Reading Materials
● Argobots

o http://pavanbalaji.github.io/pubs/2018/tpds/tpds18.argobots.pdf
o https://www.argobots.org/

● Fibers
o https://www.boost.org/doc/libs/1_80_0/libs/fiber/doc/html/index.html

23

http://pavanbalaji.github.io/pubs/2018/tpds/tpds18.argobots.pdf
https://www.argobots.org/
https://www.boost.org/doc/libs/1_80_0/libs/fiber/doc/html/index.html


CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 05: Context Switching inside the User Space (Part-2)

Next Lecture (L #06)
● Managing Overheads from Blocking Tasks & Deques

24


