
CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads
from Blocking Tasks & Deques

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

Last Lecture (Recap)
● Producer

consumer
using a single
fiber manager

● Work-stealing
scheduling
using fibers

● Argobots
runtime

1

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

Today’s Class
● Mixing blocking tasks with async tasks
● Sequential overheads

o Alternative deques

2

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

Application with Mixed Task Types
● Task parallelism primarily focuses on optimizing compute

intensive applications
o Can we support both blocking & non-blocking tasks in this

programming model?

3

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

Program with Async & Blocking Future.Get

● Parallel runtime that uses ULTs for an async
o Pros: Calling get on not-ready futures will move ULT to suspended queue automatically by the

corresponding ULT manager
o Cons: ULTs have significant high memory footprint than plain async

● Parallel runtime that uses plain task for an async
o Pros: Small memory footprint as memory required only for storing the async lambda (few bytes)
o Cons: Calling get on not-ready futures will block the worker (KLT)

● General approach for above type of tasking pattern
o Create plain tasks for async that do not yield, and use boost fcontext to context switch to another

thread stack while encountering a blocking future.get (similar to HClib,TBB, etc.)
§ Cons: Plain task implementation of async will not be able to yield, and will always run to completion

4

What are pros and cons of
designing a work-stealing
runtime that either uses

plain task or ULT for
creating an async?

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

Program with Async & Blocking IO

5

● IO based operations
o Reading / writing over the socket
o Getting input from user using keyboard or mouse

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

● Spawning a new
thread to handle IO
will lead to time
sharing of CPUs
with thread pool
worker

● Fiber library doesn’t
know about the
blocking IO
operations (similar to
using
std::condition_var
instead of
boost::fibers::conditi
on_var)
o Solution: Extra

runtime logic
needed to move
IO fiber/ULT into
suspended queue,
and start working
on an item from
the ready queue

6

boost::fibers::fiber F1([=]() { /* Some IO operation */ });
F1.get(); // Would F1 be moved into the suspended queue?

boost::fibers::fiber F2([=]() { /* Some IO operation */ });
F2.get(); // Would F2 be moved into the suspended queue?

std::thread T1([=]() { /* Some IO operation */ });
T1.join();
.....
future<int> F1 = async([&]() { x = fib(n-1); });
future<int> F2 = async([&]() { y = fib(n-2); });

.....
std::thread T1([=]() { /* Some IO operation */ });
T2.join(); // Would F2 be moved into the suspended queue?

Several recently published papers targeted this scenario

Program with Async & Blocking IO

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

Asynchronous IO in Linux
● All I/O devices in

Linux are
presented as
files

7

/* Wasted CPU cycles probing the connections */
for(int i=0; i<NUM_IO_CONNECTIONS; i++) {

if(FD[i] has new input) {
process_IO_connection(i);

}
}

/* Create an epoll instance */
int EP = epoll_create(0);
/* Add file descriptors to epoll watch list */
struct epoll_event EV[NUM_IO_CONNECTIONS];
for(int i=0; i<NUM_IO_CONNECTIONS; i++) {

EV[i].data.fd = FD[i];
epoll_ctl(EP, ..., &EV[i]);

}
while(!shutdown) {

/* Do something else while waiting for IO */
int nFDReady = epoll_wait(EP, EV, NUM_IO_CONNECTIONS, 0 /*timeout*/);
if(nFDReady > 0) process_IO_connection(...);
else Do_something_else();

}
close(EP);

We don’t
want this
approach

We want this
approach

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

● Create one communication worker apart from the regular “N”
computation workers

● Communication worker pinned to Core-0 along with the
computation worker-1

● async_read / async_write
o Create a task that contains: a) FD, b) Buffer, c) Nbytes, d) promise

object
std::promise<T> P;
std::future<T> F = P.get_future();

o Push this task to communication worker’s MPSC queue and return the
future associated with the promise object

● Communication worker remains asleep and awakes at regular
intervals to:
1. Pop and process pending IO task from its MPSC queue

§ Step-1: add to epoll watch list
§ Step-2: Create promise object and return

2. Notify about the IO device (FD) with pending request that has now
become ready
§ Complete the ready IO operation
§ Performs a put operation on the associated promise object (P) which

will move the task waiting on this future from the blocking queue into
the ready queue
• P.set_value(…)

8

// File descriptor
FD = open_IO_connection(...);
// Created by computation workers
future io1 = async_read(FD, Buffer, Nbytes);
future io1 = async_write(FD, Buffer, Nbytes);
// Context switch happens
// get satisfied by communication worker
io1.get();
io2.get();

Communication
worker

Push (IO calls)

M
ul

tip
le

 P
ro

du
ce

r S
in

gl
e

C
on

su
m

er
 q

ue
ue

 (M
PS

C
)

Similar implementation: https://www.cse.wustl.edu/~angelee/home_page/papers/futureIO.pdf

Runtime to Handle Blocking IO Tasks

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

Today’s Class
● Mixing blocking tasks with async tasks
● Sequential overheads

o Alternative deques

9

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

Sequential Overhead in Fibonacci
● Graph shows the sequential overehead of

calculating recursive Fibonacci(30) that
spawns task / ULT for every fib(n-1) recursive
call until n<2
o HClib uses tasks
o Fibers and Argobots uses ULT

● Sequential overhead = Timeseq / TimePar
o Timeseq is time for Fibonacci with serial elision
o Timeseq is for the corresponding parallel version,

but by using a single thread (sequential
execution)

● Platform details
o AMD EPYC 7551 32-core processor
o Ubuntu 18.04.3 LTS
o GCC version 7.5.0

§ -O3 flag used
o Boost version 1_80_0
o Argobots commit id dce6e72

10

0

200

400

600

800

1000

HClib Argobots (ULT) Fibers

24.7x 34x

768.7x

S
eq

ue
nt

ia
l o

ve
rh

ea
ds

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

Steal to Task Ratio in Fibonacci
● Graph shows the ratio of total tasks

stolen to total tasks created while
executing Fibonacci(30) at different
thread counts (16, 24, and 32)
o Using HClib implementation of Fib that

spawns task for every fib(n-1)
recursive call until n<2

● We can observe the steal ratio is
extremely low
o Implies that most of the tasks created

by a victim is consumed by itself
● Platform details

o AMD EPYC 7551 32-core processor
o Ubuntu 18.04.3 LTS
o GCC version 7.5.0

§ -O3 flag used

11

0

0.002

0.004

0.006

0.008

16 24 32

S
te

al
 to

 T
as

k
R

at
io

Thread pool size

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

Why Overheads?
● Creating an async is not same as executing it sequentially

o Each async has some metadata associated with it
o Coping user lambda on heap so that it can be used later even if the

function that created that task has gone out of scope
● Deque operations are costly*

o For implementing any thread-safe (concurrent) data structure we
always have to use some sort of mutual exclusion that avoids the
race condition
§ Imagine using an integer counter that is private to a thread v/s using

an integer counter that is to be updated concurrently by several
threads

12

* The exact costly operation is executing the memory fences, but let’s avoid this discussion for now. We will discuss memory fences during lectures on memory consistency

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

Today’s Class
● Mixing blocking tasks with async tasks
● Sequential overheads

o Alternative deques

13

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

14

● Steals are rare
o Majority of the tasks produced by the victim are consumed by itself

● Recall, deques are concurrent data structure, hence to reduce
the overheads, each victim should minimize accessing its
“concurrent” deque for push/pop
o Then where to store async tasks at victims?

§ Use a mix of private and shared task pools
• Push/pop from private pool, but ensure task(s) availability in shared pool to

support stealing

Reducing Concurrent Access: General Idea

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

15

Paper based on a similar idea: https://terpconnect.umd.edu/~barua/ppopp164.pdf

List Head NULL

W1

fib(40)

● Each worker uses a private linked list and a concurrent deque
● Victim ensures there are some minimum number of tasks always available

in concurrent deque to support steals
● If there are sufficient tasks available in concurrent deque then victim always

push/pop from its private list
● Victim checks total tasks on its deque during each push and pop operations
● Thief always steal from the deque as it was doing in default case

Reducing Concurrent Access: Using List & Deque

https://terpconnect.umd.edu/~barua/ppopp164.pdf

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

16

Paper based on a similar idea: https://terpconnect.umd.edu/~barua/ppopp164.pdf

List Head NULL

W1

T1

fib(40)

async fib(39) fib(38)

push(task)

● Each worker uses a private linked list and a concurrent deque
● Victim ensures there are some minimum number of tasks always available

in concurrent deque to support steals
● If there are sufficient tasks available in concurrent deque then victim always

push/pop from its private list
● Victim checks total tasks on its deque during each push and pop operations
● Thief always steal from the deque as it was doing in default case

Reducing Concurrent Access: Using List & Deque

https://terpconnect.umd.edu/~barua/ppopp164.pdf

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

17

Paper based on a similar idea: https://terpconnect.umd.edu/~barua/ppopp164.pdf

List Head NULL

W1

T1T2

fib(40)

async fib(39) fib(38)

async fib(37) fib(36)

push(task)

● Each worker uses a private linked list and a concurrent deque
● Victim ensures there are some minimum number of tasks always available

in concurrent deque to support steals
● If there are sufficient tasks available in concurrent deque then victim always

push/pop from its private list
● Victim checks total tasks on its deque during each push and pop operations
● Thief always steal from the deque as it was doing in default case

Reducing Concurrent Access: Using List & Deque

https://terpconnect.umd.edu/~barua/ppopp164.pdf

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

18

Paper based on a similar idea: https://terpconnect.umd.edu/~barua/ppopp164.pdf

List Head NULL

W1

T1T2

NULLT3

fib(40)

async fib(39) fib(38)

async fib(37) fib(36)

async fib(35) fib(34)

push(task)

● Each worker uses a private linked list and a concurrent deque
● Victim ensures there are some minimum number of tasks always available

in concurrent deque to support steals
● If there are sufficient tasks available in concurrent deque then victim always

push/pop from its private list
● Victim checks total tasks on its deque during each push and pop operations
● Thief always steal from the deque as it was doing in default case

Reducing Concurrent Access: Using List & Deque

https://terpconnect.umd.edu/~barua/ppopp164.pdf

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

19

Paper based on a similar idea: https://terpconnect.umd.edu/~barua/ppopp164.pdf

List Head NULL

W1

fib(40)

async fib(39) fib(38)

T1

async fib(37) fib(36)

T2

async fib(35) fib(34)

NULLT3

async fib(33) fib(32)

NULLT4 push(task)

● Each worker uses a private linked list and a concurrent deque
● Victim ensures there are some minimum number of tasks always available

in concurrent deque to support steals
● If there are sufficient tasks available in concurrent deque then victim always

push/pop from its private list
● Victim checks total tasks on its deque during each push and pop operations
● Thief always steal from the deque as it was doing in default case

Reducing Concurrent Access: Using List & Deque

https://terpconnect.umd.edu/~barua/ppopp164.pdf

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

20

Paper based on a similar idea: https://terpconnect.umd.edu/~barua/ppopp164.pdf

List Head NULL

W1

fib(40)

async fib(39) fib(38)

T1

async fib(37) fib(36)

T2

async fib(35) fib(34)

NULLT3

async fib(33) fib(32)

NULLT4

● Each worker uses a private linked list and a concurrent deque
● Victim ensures there are some minimum number of tasks always available

in concurrent deque to support steals
● If there are sufficient tasks available in concurrent deque then victim always

push/pop from its private list
● Victim checks total tasks on its deque during each push and pop operations
● Thief always steal from the deque as it was doing in default case

pop(task)

Reducing Concurrent Access: Using List & Deque

https://terpconnect.umd.edu/~barua/ppopp164.pdf

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

21

Paper based on a similar idea: https://terpconnect.umd.edu/~barua/ppopp164.pdf

List Head NULL

W1

fib(40)

async fib(39) fib(38)

T1

async fib(37) fib(36)

T2

async fib(35) fib(34)

NULLT3

pop(task)

● Each worker uses a private linked list and a concurrent deque
● Victim ensures there are some minimum number of tasks always available

in concurrent deque to support steals
● If there are sufficient tasks available in concurrent deque then victim always

push/pop from its private list
● Victim checks total tasks on its deque during each push and pop operations
● Thief always steal from the deque as it was doing in default case

Reducing Concurrent Access: Using List & Deque

https://terpconnect.umd.edu/~barua/ppopp164.pdf

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

22

Paper based on a similar idea: https://terpconnect.umd.edu/~barua/ppopp164.pdf

List Head NULL

W1

fib(40)

async fib(39) fib(38)

T1

async fib(37) fib(36)

T2

pop(task)

● Each worker uses a private linked list and a concurrent deque
● Victim ensures there are some minimum number of tasks always available

in concurrent deque to support steals
● If there are sufficient tasks available in concurrent deque then victim always

push/pop from its private list
● Victim checks total tasks on its deque during each push and pop operations
● Thief always steal from the deque as it was doing in default case

Reducing Concurrent Access: Using List & Deque

https://terpconnect.umd.edu/~barua/ppopp164.pdf

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

23

Paper based on a similar idea: https://terpconnect.umd.edu/~barua/ppopp164.pdf

List Head NULL

W1

fib(40)

async fib(39) fib(38)

T1

pop(task)

● Each worker uses a private linked list and a concurrent deque
● Victim ensures there are some minimum number of tasks always available

in concurrent deque to support steals
● If there are sufficient tasks available in concurrent deque then victim always

push/pop from its private list
● Victim checks total tasks on its deque during each push and pop operations
● Thief always steal from the deque as it was doing in default case

Reducing Concurrent Access: Using List & Deque

https://terpconnect.umd.edu/~barua/ppopp164.pdf

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

24

Paper based on a similar idea: https://terpconnect.umd.edu/~barua/ppopp164.pdf

● Each worker uses a private linked list and a concurrent deque
● Victim ensures there are some minimum number of tasks always available

in concurrent deque to support steals
● If there are sufficient tasks available in concurrent deque then victim always

push/pop from its private list
● Victim checks total tasks on its deque during each push and pop operations
● Thief always steal from the deque as it was doing in default case

List Head NULL

W1

fib(40)

pop(task)

Reducing Concurrent Access: Using List & Deque

https://terpconnect.umd.edu/~barua/ppopp164.pdf

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

25

#define DEQUE_LIMIT /* Some value */

struct Node {
User_Lambda task;
Node* next;

}

Node *Head, *Tail; /* Thread local */

void push(T lambda) {
bool success = true;
/* Add task to my deque if required */
if(current_worker->deque_size < DEQUE_LIMIT) {

success = move_task_from_list_to_deque();
}
if(!success) current_worker->deque_push(lambda);
else current_worker->push_to_list_tail(lambda);

}

Paper based on a similar idea: https://terpconnect.umd.edu/~barua/ppopp164.pdf

Task* pop() {
Task* t = NULL;
if(current_worker->Tail != NULL) {

t = current_worker->pop_from_list_tail();
move_task_from_list_to_deque();

} else {
t = current_worker->deque_pop();

}
return t;

}

bool move_task_from_list_to_deque() {
Task* t = pop_from_list_head();
if(t) {

current_worker->deque_push(t);
} else {

return false;
}

}

Popping items
from Head for

adding into deque
has some benefits
with recursive task

creation? Why?

Reducing Concurrent Access: Using List & Deque

https://terpconnect.umd.edu/~barua/ppopp164.pdf

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

● Issues
o Doesn’t support stealing more than one tasks at a time

§ Stealing more than one task can reduce the steal frequency
o Maintaining a linked list means more mallocs/frees for

adding/removing nodes
§ Tasks are anyway copied on heap

26

Reducing Concurrent Access: Using List & Deque

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

Reading Materials
● Handling blocking IO asynchronously

o https://www.cse.wustl.edu/~angelee/home_page/papers/futureIO.pdf

● Using list and deques together
o https://terpconnect.umd.edu/~barua/ppopp164.pdf

● You may only read the implementation section and skip
theorem/proofs (if any)

27

https://www.cse.wustl.edu/~angelee/home_page/papers/futureIO.pdf
https://terpconnect.umd.edu/~barua/ppopp164.pdf

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 06: Managing Overheads from Blocking Tasks and Deques

Next Lecture (L #07)
● Managing concurrent deque overheads (contd.)
● Runtime techniques for controlling task granularity
● Quiz-1

o Syllabus: L#02 - L#04
o During lecture hours

28

