
CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task 
Granularity

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

Today’s Class
● Alternative deques (contd.)
● Automatic task granularity control
● Quiz-1

2



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

3

Reducing Concurrent Access: Using Private Deque
● Every worker maintains 

three data structures
o A non-concurrent private 

deque
§ Same as the default deque, 

but without the support for 
concurrent (thread-safe) 
accesses

o One mailbox
§ That can store one or more 

tasks
§ Contains a counter 

indicating total number of 
stored tasks

o One shared counter

Pr
iv

at
e 

D
eq

ue

Mailbox -1

W1 Paper: https://hal.inria.fr/hal-00863028/document

https://hal.inria.fr/hal-00863028/document


CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

4

Reducing Deque Access: Using Private Deque
Pr

iv
at

e 
D

eq
ue

Mailbox -1

W1

● Victim 
o Push/pop tasks into its 

private deque

Push
(LIFO)

Pop
(LIFO)

Paper: https://hal.inria.fr/hal-00863028/document

https://hal.inria.fr/hal-00863028/document


CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

5

Reducing Deque Access: Using Private Deque
Pr

iv
at

e 
D

eq
ue

Mailbox -1

W1

● Thief 
o Selects a random victim 

(W1) who has items on its 
deque

o Checks victim deque size 
without any locks

Push
(LIFO)

Pop
(LIFO)

Pr
iv

at
e 

D
eq

ue

Mailbox -1

W2 Paper: https://hal.inria.fr/hal-00863028/document

https://hal.inria.fr/hal-00863028/document


CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

6

Reducing Deque Access: Using Private Deque
Pr

iv
at

e 
D

eq
ue

Mailbox W2

W1

● Thief 
o Record its own id inside the 

request box at W1 (critical 
section), and goes inside 
condition wait

o Only one thief at a time

Push
(LIFO)

Pop
(LIFO)

Pr
iv

at
e 

D
eq

ue

Mailbox -1

W2 Paper: https://hal.inria.fr/hal-00863028/document

https://hal.inria.fr/hal-00863028/document


CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

7

Reducing Deque Access: Using Private Deque
Pr

iv
at

e 
D

eq
ue

Mailbox W2

W1

● Victim
o Check its request box 

inside each push/pop/steal
o If tasks are available on 

victim’s private deque
§ Pop item(s) from the head 

and copies it into the 
waiting thief’s mailbox 
(W2)

§ Update W2’s mailbox with 
the total number of tasks 
copied

Push
(LIFO)

Pop
(LIFO)

Pr
iv

at
e 

D
eq

ue

Tasks=1 -1

W2 Paper: https://hal.inria.fr/hal-00863028/document

https://hal.inria.fr/hal-00863028/document


CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

8

Reducing Deque Access: Using Private Deque
Pr

iv
at

e 
D

eq
ue

Mailbox -1

W1

● Victim
o Clears its request box 
o Signals the waiting thief W2

Push
(LIFO)

Pop
(LIFO)

Pr
iv

at
e 

D
eq

ue

Tasks=1 -1

W2 Paper: https://hal.inria.fr/hal-00863028/document

https://hal.inria.fr/hal-00863028/document


CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

9

Reducing Deque Access: Using Private Deque
Pr

iv
at

e 
D

eq
ue

Mailbox -1

W1

● Thief
o Unblocks after being 

notified by W1
o Steal tasks from its mailbox 

and start executing them
§ If more than one task 

received then extra tasks 
pushed to its private 
deque

o Failed steal attempt if it did 
not receive any task (i.e., if 
W1 ran out of tasks)

Push
(LIFO)

Pop
(LIFO)

Pr
iv

at
e 

D
eq

ue

Tasks=1 -1

W2

Steal

Paper: https://hal.inria.fr/hal-00863028/document

https://hal.inria.fr/hal-00863028/document


CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

Private Deque using Argobots?
● You will have to create a custom scheduler instead of 

using the inbuilt work-stealing scheduler
o See an example: 

https://github.com/pmodels/argobots/blob/main/examples/scheduli
ng/sched_and_pool_user.c

10



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

Today’s Class
● Alternative deques (contd.)
● Automatic task granularity control
● Quiz-1

11



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

Task Granularity Affects Execution
● We know concurrent deques have 

overheads, but if we want to 
continue using the concurrent 
deques, then how can we avoid 
sequential overheads?
o By controlling task granularity

§ Neither too many tasks, nor too few!

● Options to control task granularity?
1. Calculate Task-2 (fib of n-2) 

sequentially
2. Don’t create async tasks when N is 

less than certain threshold
§ What threshold is optimal?

3. Use memoization
§ Is it possible for all parallel 

programs?

12

1

21

41

61

THRESHOLD=2 THRESHOLD=5 THRESHOLD=10

S
eq

ue
nt

ia
l O

ve
rh

ea
ds

Ti
m

e P
ar

/ T
im

e S
eq

Running parallel recursive parallel Fib(40) using HClib as its async won’t launch thread unlike std::async



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

First and Foremost, Work-Stealing is Best 
Suited for What Kind of Applications?

● Recursive divide-and-
conquer style
o Leads to fine granular 

task creation
o How its helpful?

1. Nested task creation

13

fib(40)

async fib(39) fib(38)

async fib(37) fib(36)

async fib(35) fib(34)

async fib(33) fib(32)

async fib(38) fib(37)

async fib(36) fib(35)

async fib(34) fib(33)



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

First and Foremost, Work-Stealing is Best 
Suited for What Kind of Applications?

● Recursive divide-and-
conquer style
o Leads to fine granular 

task creation
o How its helpful?

1. Nested task creation
2. Stealing an async will 

eventually give birth to 
several new asyncs at 
the thief
• It will keep the thief 

busy and reduce 
steal attempts

14

fib(40)

async fib(39) fib(38)

async fib(37) fib(36)

async fib(35) fib(34)

async fib(33) fib(32)

async fib(38) fib(37)

async fib(36) fib(35)

async fib(34) fib(33)

Steal-1
Steal-2

Steal-3



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

First and Foremost, Work-Stealing is Best 
Suited for What Kind of Applications?

● Recursive divide-and-
conquer style
o Leads to fine granular task 

creation
o Disadvantages?

1. Tasks created near the 
bottom of the tree are too 
small in computation, and 
wouldn’t be able to keep a 
thief busy once stolen

15



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

First and Foremost, Work-Stealing is Best 
Suited for What Kind of Applications?

16

Stack Bottom

Stack Top

St
ac

k 
G

ro
w

th

● Recursive divide-and-
conquer style
o Leads to fine granular task 

creation
o Disadvantages?

1. Tasks created near the 
bottom of the tree are too 
small in computation, and 
wouldn’t be able to keep a 
thief busy once stolen

2. Thread stack too deep
• Too many context 

switches for moving back 
and forth between caller 
and callee stack frames 
(although in user space)

• Too many context 
switches for moving back 
and forth between caller 
and callee stack frames 
(although in user space)



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

How to Avoid Those Disadvantages
1. Tasks near the bottom of the tree are small computations

o Automatic granularity control
§ Stop creating new async after some “depth” is reached
§ Async created after that “depth” is executed sequentially

2. Deep thread stack due to recursion
o Using two versions of the parallel code

§ Convert recursion into iterative call after appropriate “depth”

17



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

Solution-1: Automatic Granularity Control
● Runtime can perform dynamic task 

aggregations

18

fib(40)

async fib(39) fib(38)

async fib(37) fib(36)

async fib(35) fib(34)

async fib(38) fib(37)

async fib(36) fib(35)

Aggregation of this task 
will not create any new 
async in this subtree, 
and the async will be 
executed sequentially



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

Solution-1: Automatic Granularity Control
● Runtime can perform dynamic task 

aggregations
● Each task keeps track of its depth in the 

recursion tree, and its execution time
o Depth is stored locally inside the task

19

fib(40)

async fib(39) fib(38)

async fib(37) fib(36)

async fib(35) fib(34)

async fib(38) fib(37)

async fib(36) fib(35)

Depth=0

Depth=1

Depth=2

Depth=3

Depth=4



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

Solution-1: Automatic Granularity Control
● Runtime can perform dynamic task 

aggregations
● Each task keeps track of its depth in the 

recursion tree, and its execution time
o Depth is stored locally inside the task

● Whenever a task complete its execution, 
it does two things 
o It add its execution time to the parent 

task’s execution time
§ Mutual exclusion required

20

fib(40)

async fib(39) fib(38)

async fib(37) fib(36)

async fib(35) fib(34)

async fib(38) fib(37)

async fib(36) fib(35)

Depth=0

Depth=1

Depth=2

Depth=3

Depth=4

T1 T2

T3 T5

T6 T7

Execution time of this task 
= 

T1+T2+T3+T4+…..+Tn



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

Solution-1: Automatic Granularity Control
● Runtime can perform dynamic task 

aggregations
● Each task keeps track of its depth in the 

recursion tree, and its execution time
o Depth is stored locally inside the task

● Whenever a task complete its execution, 
it does two things 
o It add its execution time to the parent 

task’s execution time
§ Mutual exclusion required

o Update the execution time at its depth in a 
shared global hash map (key=depth, 
value=time)

21

fib(40)

async fib(39) fib(38)

async fib(37) fib(36)

async fib(35) fib(34)

async fib(38) fib(37)

async fib(36) fib(35)

Depth=0

Depth=1

Depth=2

Depth=3

Depth=4

Key=0
Value=0

Key=1
Value=0

Key=2
Value=0

Key=3
Value=0



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

Solution-1: Automatic Granularity Control
● Runtime can perform dynamic task 

aggregations
● Each task keeps track of its depth in the 

recursion tree, and its execution time
o Depth is stored locally inside the task

● Whenever a task complete its execution, 
it does two things 
o It add its execution time to the parent 

task’s execution time
§ Mutual exclusion required

o Update the execution time at its depth in a 
shared global hash map (key=depth, 
value=time)

22

fib(40)

async fib(39) fib(38)

async fib(37) fib(36)

async fib(35) fib(34)

async fib(38) fib(37)

async fib(36) fib(35)

Depth=0

Depth=1

Depth=2

Depth=3

Depth=4

Key=0
Value=0

Key=1
Value=0

Key=2
Value=10

Key=3
Value=0

Time=10



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

Solution-1: Automatic Granularity Control
● Runtime can perform dynamic task 

aggregations
● Each task keeps track of its depth in the 

recursion tree, and its execution time
o Depth is stored locally inside the task

● Whenever a task complete its execution, 
it does two things 
o It add its execution time to the parent 

task’s execution time
§ Mutual exclusion required

o Update the execution time at its depth in a 
shared global hash map (key=depth, 
value=time)
§ Averaging of value (time) for a given 

key (depth) when more than one tasks 
complete its execution

§ Averaging would be stopped after 
enough samples collected at a depth

23

fib(40)

async fib(39) fib(38)

async fib(37) fib(36)

async fib(35) fib(34)

async fib(38) fib(37)

async fib(36) fib(35)

Depth=0

Depth=1

Depth=2

Depth=3

Depth=4

Key=0
Value=0

Key=1
Value=0

Key=2
Value=10

Key=3
Value=0

Time=10Time=11

Time=11

Time=12



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

Solution-1: Automatic Granularity Control
● Runtime can perform dynamic task 

aggregations
● Each task keeps track of its depth in the 

recursion tree, and its execution time
o Depth is stored locally inside the task

● Whenever a task complete its execution, 
it does two things 
o It add its execution time to the parent 

task’s execution time
§ Mutual exclusion required

o Update the execution time at its depth in a 
shared global hash map (key=depth, 
value=time)
§ Averaging of value (time) for a given 

key (depth) when more than one tasks 
complete its execution

§ Averaging would be stopped after 
enough samples collected at a depth

24

fib(40)

async fib(39) fib(38)

async fib(37) fib(36)

async fib(35) fib(34)

async fib(38) fib(37)

async fib(36) fib(35)

Depth=0

Depth=1

Depth=2

Depth=3

Depth=4

Key=0
Value=0

Key=1
Value=0

Key=2
Value=11

Key=3
Value=0

Time=10Time=11

Time=11

Time=12

Average value of all time



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

Solution-1: Automatic Granularity Control
● Runtime can perform dynamic task 

aggregations
● Each task keeps track of its depth in the 

recursion tree, and its execution time
o Depth is stored locally inside the task

● Whenever a task complete its execution, 
it does two things 
o It add its execution time to the parent 

task’s execution time
§ Mutual exclusion required

o Update the execution time at its depth in a 
shared global hash map (key=depth, 
value=time)
§ Averaging of value (time) for a given 

key (depth) when more than one tasks 
complete its execution

§ Averaging would be stopped after 
enough samples collected at a depth

● Depth threshold decided based on the 
execution time of tasks at each depth
o Beyond this depth threshold tasks would 

be aggregated

25

fib(40)

async fib(39) fib(38)

async fib(37) fib(36)

async fib(35) fib(34)

async fib(38) fib(37)

async fib(36) fib(35)

Depth=0

Depth=1

Depth=2

Depth=3

Depth=4

Key=0
Value=14

Key=1
Value=12

Key=2
Value=11

Key=3
Value=9



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

Solution-2: Using Two Versions of the Code
● When depth 

threshold is reached, 
switch to an iterative 
version of the 
recursive algorithm
o Most of the recursive 

algorithms can be 
converted into 
iterative algorithm

o Although, asking the 
user to provide an 
iterative version is 
breaking the support 
for serial elision

26

There is a general format for converting tail recursion into iterative version: https://www.baeldung.com/cs/convert-recursion-to-iteration

uint64_t fib(uint64_t n) { 
if (n < 2) { 

return n; 
} else {

uint64_t x = fib(n-1);
uint64_t y = fib(n-2);
return (x + y);

}
}

uint64_t fib(uint64_t n) { 
uint64_t f1=1;
uint64_t f2=1;
uint64_t m=2;
while(m < n) {

uint64_t temp = f2+f1;
f1=f2;
f2=temp;
m=m+1;

}
return f2;

}



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

Reading Materials
● Private deques

o https://hal.inria.fr/hal-00863028/document
● Automatic granularity control

o An adaptive cut-off for task parallelism, SC 2008
§ https://www.academia.edu/download/35796885/1234120839604__a36-

duran.pdf

● Using multiple versions of the code
o A static cut-off for task parallel programs, PACT 2016

§ https://www.eidos.ic.i.u-tokyo.ac.jp/~iwasaki/files/PACT2016_slides.pdf

● You may only read the implementation section and skip 
theorem/proofs (if any)

27

https://hal.inria.fr/hal-00863028/document
https://www.academia.edu/download/35796885/1234120839604__a36-duran.pdf
https://www.eidos.ic.i.u-tokyo.ac.jp/~iwasaki/files/PACT2016_slides.pdf


CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 07: Controlling Task Granularity

Next Lecture (L #08)
● Memory consistency models
● Project milestone-1 will be announced over the weekend

28


