
CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to 
Memory Consistency

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Last Lecture (Recap)

● Reducing concurrent accesses to private deque
● Automatically controlling task granularity

1



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Today’s Class
● Memory consistency problem
● Difference between coherence and consistency
● Sequential consistency

2



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Multicore System Overview

3

● Cache controller copes 
code/data to/from main 
memory
o It runs the actual cache 

coherence algorithm
● LLC is shared with all 

the cores
● LLC is logically a 

memory side cache as 
it primarily serves to 
reduce the latency and 
increase bandwidth of 
memory accesses

Cache 
Controller

Private 
Cache

Interconnection Network

Cache 
Controller

Private 
Cache

LLC / Memory 
Controller

Last-Level 
Cache (LLC) Multicore Processor Chip

Main Memory

Core-1 Core-n



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Physical VS. Logical Cores
● Architectural state of a 

core are the registers 
(EBP, ESP, EIP, etc.)

● Logical cores of a 
processor share
o Private cache
o Execution engine
o System bus interface

● If the execution of one of 
the logical core blocks 
(e.g., Core-0 waiting for a 
memory fetch from the 
DRAM) then the other 
logical core (Core-2) can 
resume its execution with 
its own state

4

Private Cache

State

Core-0

Private Cache

State

Core-1

Private Cache

State

Core-0 & Core-2

Private Cache

State State State

Core-1 & Core-3

Dual-core processor 
with hyperthreading 

DISABLED

Dual-core processor 
with hyperthreading 

ENABLED

Execution 
Engine

Execution 
Engine

Execution 
Engine

Execution 
Engine



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

The Cache Coherence Problem

5

Cache

X=10

Core-1 Core-2

Memory

Read(X)

X=10 Cache

1

2 3

4

Cache

X=10

Core-1Core-1

Memory

Read(X)

X=10Cache

1

2 3

4

X=10

X=10Cache

X=10

Core-1 Core-2

Memory

Write(X++)

X=5 Cache X=11 Cache

X=10

Core-1 Core-2

Memory

Write(X=5)

X=5 Cache X=10



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Cache Coherence (CC)
● CC protocols gives the illusion of an atomic memory 

system without any caches
● CC definition / requirements

o Single-Writer-Multiple-Reader (write serialization)
§ At any given instant only one core can WRITE or WRITE+READ a 

given memory location, or multiple cores can only READ that location
o Value of a memory location is eventually propagated to all readers 

(value propagation)

6

Read (X)
Core-1 & 2

Write (X)
Core-1

Read (X)
Core-3 & 4

Read-Write (X)
Core-2

TIME
Epoch=1 Epoch=2 Epoch=3 Epoch=4

Dividing a memory location’s lifetime into epochs



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Question
● Assume that for each memory locations in a CC system, 

there are N tokens, where N is the total number of cores
o How to define memory access rule for a memory location X using 

these tokens?
§ If a core has all of the tokens, it may write the memory location. IF a 

core has one or more tokens, it may read the memory location

7



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Multithreaded Programs

8

Initially A = B = 0

Thread 1 Thread 2

A = 1
if (B == 0)

print “Hello”;

B = 1
if (A == 0)

print “World”;

Question: What can be printed: “Hello”, “World”, or “Hello World”?



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Why Memory Consistency Model?
● What does programmer think?

o Cores atomically executes one instruction at a time in program order
§ Valid over a single core (sequential) processor

9

Thread 1 Thread 2

A = 1
if (B == 0)

print “Hello”;

B = 1
if (A == 0)

print “World”;

S1

S2

S3

S4

Question: According to you as a programmer, 
what are the valid program orders here?

1. S1 – S2 – S3 – S4
2. S3 – S4 – S1 – S2
3. S1 – S3 – S2 – S4
4. S2 – S1 – S3 – S4
5. S1 – S3 – S4 – S2
6. S2 – S1 – S4 – S3

Let’s see if we can 
reproduce it on our 

machine



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Why Memory Consistency Model?
● What does programmer think?

o Cores atomically executes one instruction at a time in program order
§ Valid over a single core (sequential) processor

● What cores can do?
o Reorder memory operations to reduce memory access latency

§ Read-Read
§ Write-Write
§ Read-Write
§ Write-Read

● Memory consistency model defines what it means to “read a 
memory”, “write at a memory”, and the ”respective ordering”

10



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Today’s Class
● Memory consistency problem
● Difference between coherence and consistency
● Sequential consistency

11



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Typical Memory Hierarchy

12

● Hiding Read (Load) latency
o Prefetching loads that are delayed due to consistency model
o Out-of-order execution of loads

§ Speculative execution to allow the processor to proceed even though consistency model 
requires memory accesses be delayed (e.g., Intel, AMD)

§ Further relaxing the memory consistency model (e.g., ARM, IBM)

● Hiding Write (Store) latency
o Store Buffers – available on almost all modern processors (more on this later)

● Memory latency continues to 
limit the performance of 
modern out-of-order cores
o Loads and Stores are very 

expensive
o Instruction pipelining is one 

simple technique for improving 
memory latency



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Consistency VS. Coherence (Example)

13

Students, I have updated the quiz 
syllabus in GC, please check

I already have a 
copy of syllabus I already have a 

copy of syllabus

I already have a 
copy of syllabus

Each student has a stale copy of shared variable “syllabus”. They will eventually
get the updated copy of “syllabus” due to coherence’s value propagation property

9.02am
9.02am

9.02am

9am

● Coherence 
assures that 
values written 
by one 
processor are 
made visible to 
other 
processors



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Consistency VS. Coherence (Example)
● Consistency 

insures that 
writes to 
different 
locations will 
be seen in an 
order that 
makes sense, 
given the 
source code

● Coherence 
insures that 
writes to a 
particular 
location will be 
seen in order

15

Students, I have updated the quiz 
syllabus in GC, please check

Aah.. marks are 
here, but quiz has 

same syllabus

9.02am
9.02am

9.02am

Ahh,.. Let me 
update syllabus
after completing 

evaluations..

Finally 
completed all 

evaluations.. Let 
me update quiz 
syllabus on GC

8.56am9am

8:50am TA, please update on GC that 
Quiz syllabus will include 

today’s lecture as well TA, please email students 
their project deadline-1 marks 

8:55am 8:51am

Yes, lets do that 
right away as I will 
forget their marks

10am
Aah.. marks are 

here, but quiz has 
same syllabus

Aah.. marks are 
here, but quiz has 

same syllabus



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Consistency VS. Coherence
● Coherence is not equal to 

memory consistency 
o Core pipeline uses coherence as 

an abstraction on memory 
system

o Specific to a single shared 
memory location

● Core pipeline can present 
memory operations to 
coherence system in an order 
different than the program order

● Memory consistency uses 
cache coherence as a useful 
black box
o Related to all shared memory 

locations

16

Cache

LLC

Core

Cache

Main Memory

Coherence (Black Box)

Core

Core pipeline (Reordering)

Program
Read(A), Write(B), Read(C), Write(D)

Write(B)
Read(A)

Write(D)
Read(C)

Reordering is related to 
multiple memory locations

Coherence is related to a 
single memory location

Consistency regulates reordering



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Language v/s Hardware Memory Model

17

Program C / C++ / Java

Compiler Optimization

Language Memory Model

Processor

Hardware Memory Model

For example, semantics of 
reading/writing a “volatile” variable 

is different in C/C++ and Java

Compilers can change 
control-flow, or 

reorder any memory 
operations

Memory reordering at 
compile time

Memory reordering 
at runtime

Reordering effects 
visible only in case of 
multicore processor



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Memory Ordering at Different Stages

18

Picture (1) source: https://preshing.com/images/hardware-matters.png

Source code order Program order Execution 
order

Perceived order 
(relative to other CPU)

Execution order 
(at a single CPU)



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Today’s Class
● Memory consistency problem
● Difference between coherence and consistency
● Sequential consistency

19



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Sequential Consistency
● Programmer’s productivity is high if the memory operations in 

his parallel program executes in the program order
o Sequential consistency

§ Lamport defined SC (1979)

● Let’s assume there is a processor that supports sequential 
consistency to provide high productivity for the programmer
o Although it suffers on performance

● What that processor has to do for supporting sequential 
consistency?

20



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Sequential Consistency
Can be seen as a ”switch” running one instruction at a time

21

Memory
A = 0
B = 0

Core 1
A = 1
r0 = B

Core 2
B = 1
r1 = A

Executed

Credits: James Bornholt, UW, CSE451



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Sequential Consistency
Can be seen as a ”switch” running one instruction at a time

22

Memory
A = 0
B = 0

Core 1
A = 1
r0 = B

Core 2
B = 1
r1 = A

Executed

Credits: James Bornholt, UW, CSE451



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Sequential Consistency
Can be seen as a ”switch” running one instruction at a time

23

Memory
A = 1
B = 0

Core 1
A = 1
r0 = B

Core 2
B = 1
r1 = A

Executed

Credits: James Bornholt, UW, CSE451

A = 1



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Sequential Consistency
Can be seen as a ”switch” running one instruction at a time

24

Memory
A = 1
B = 0

Core 1
A = 1
r0 = B

Core 2
B = 1
r1 = A

Executed

Credits: James Bornholt, UW, CSE451

A = 1



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Sequential Consistency
Can be seen as a ”switch” running one instruction at a time

25

Memory
A = 1
B = 1

Core 1
A = 1
r0 = B

Core 2
B = 1
r1 = A

Executed

Credits: James Bornholt, UW, CSE451

A = 1
B = 1



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Sequential Consistency
Can be seen as a ”switch” running one instruction at a time

26

Memory
A = 1
B = 1

Core 1
A = 1
r0 = B

Core 2
B = 1
r1 = A

Executed

Credits: James Bornholt, UW, CSE451

A = 1
B = 1



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Sequential Consistency
Can be seen as a ”switch” running one instruction at a time

27

Memory
A = 1
B = 1

Core 1
A = 1
r0 = B

Core 2
B = 1
r1 = A

Executed

Credits: James Bornholt, UW, CSE451

A = 1
B = 1

r1 = A (=1)



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Sequential Consistency
Can be seen as a ”switch” running one instruction at a time

28

Memory
A = 1
B = 1

Core 1
A = 1
r0 = B

Core 2
B = 1
r1 = A

Executed

Credits: James Bornholt, UW, CSE451

A = 1
B = 1

r1 = A (=1)



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Sequential Consistency
Can be seen as a ”switch” running one instruction at a time

29

Memory
A = 1
B = 1

Core 1
A = 1
r0 = B

Core 2
B = 1
r1 = A

Executed

Credits: James Bornholt, UW, CSE451

A = 1
B = 1

r1 = A (=1)
r0 = B (=1)



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Summary: Sequential Consistency
● Each core execute its read/write in the program order

o Irrespective of whether they are at same or different addresses
● Every read from address A gets its value from the last write 

before it to the same address A
o Operations must appear atomic—one operation must complete before 

the next one is issued

30

READ

READ

WRITE

WRITE

READ

WRITE

WRITE

READ

Don’t start the next 
operation until the 
previous completes



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

The Problem with SC

31Credits: James Bornholt, UW, CSE451

● With a single view of 
memory, we can’t run (2) 
until (1) has become visible 
to every other thread
o On a modern CPU, that’s a 

very expensive operation 
due to the cache hierarchy

● The only shared memory 
between the two cores is all 
the way back at the L3 
cache, which often takes 
upwards of 90 cycles to 
access



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Sequential Consistency Supported!
● Is there support for sequential consistency in modern 

programming language?
o Yes, but only for one particular case in almost every language!

§ Only for code block that is Data Race Free (DRF)
§ Even without using any special construct, you get it for free inside 

critical sections that are executed within mutex lock/unlock operations
• We will see in lecture 10 about other features in C++11 to support DRF

o No sequential consistency for rest of the program (racy code!)

32



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Sequential Consistency for Data Race Free (DRF)
Cores executing synchronized code blocks

o Can be seen as a ”switch” running one instruction at a time

33

Memory
Flag = 0
B = 0
A = 0

Core 1
Lock (Mutex)
B = 10
Flag = 1
Unlock (Mutex)

Core 2
Lock (Mutex)
if (Flag)

A = B
Unlock (Mutex)

Executed

© Vivek Kumar



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Sequential Consistency for Data Race Free (DRF)
Cores executing synchronized code blocks

o Can be seen as a ”switch” running one instruction at a time

34

Memory
Flag = 0
B = 0
A = 0

Core 1
Lock (Mutex)
B = 10
Flag = 1
Unlock (Mutex)

Core 2
Lock (Mutex)
if (Flag)

A = B
Unlock (Mutex)

Executed

© Vivek Kumar



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Sequential Consistency for Data Race Free (DRF)
Cores executing synchronized code blocks

o Can be seen as a ”switch” running one instruction at a time

35

Memory
Flag = 0
B = 0
A = 0

Core 1
Lock (Mutex)
B = 10
Flag = 1
Unlock (Mutex)

Core 2
Lock (Mutex)
if (Flag)

A = B
Unlock (Mutex)

Executed
Lock Mutex

B = 10
Flag = 1

Unlock Mutex

© Vivek Kumar



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Sequential Consistency for Data Race Free (DRF)
Cores executing synchronized code blocks

o Can be seen as a ”switch” running one instruction at a time

36

Memory
Flag = 1
B = 10
A = 0

Core 1
Lock (Mutex)
B = 10
Flag = 1
Unlock (Mutex)

Core 2
Lock (Mutex)
if (Flag)

A = B
Unlock (Mutex)

Executed
Lock Mutex

B = 10
Flag = 1

Unlock Mutex

© Vivek Kumar



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Sequential Consistency for Data Race Free (DRF)
Cores executing synchronized code blocks

o Can be seen as a ”switch” running one instruction at a time

37

Memory
Flag = 1
B = 10
A = 0

Core 1
Lock (Mutex)
B = 10
Flag = 1
Unlock (Mutex)

Core 2
Lock (Mutex)
if (Flag)

A = B
Unlock (Mutex)

Executed
Lock Mutex

B = 10
Flag = 1

Unlock Mutex

© Vivek Kumar



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Sequential Consistency for Data Race Free (DRF)
Cores executing synchronized code blocks

o Can be seen as a ”switch” running one instruction at a time

38

Memory
Flag = 1
B = 10
A = 0

Core 1
Lock (Mutex)
B = 10
Flag = 1
Unlock (Mutex)

Core 2
Lock (Mutex)
if (Flag)

A = B
Unlock (Mutex)

Executed
Lock Mutex

B = 10
Flag = 1

Unlock Mutex
Lock Mutex
Flag == 1

r0 = 10
Unlock Mutex

© Vivek Kumar



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Sequential Consistency for Data Race Free (DRF)
Cores executing synchronized code blocks

o Can be seen as a ”switch” running one instruction at a time

39

Memory
Flag = 1
B = 10
A = 10

Core 1
Lock (Mutex)
B = 10
Flag = 1
Unlock (Mutex)

Core 2
Lock (Mutex)
if (Flag)

A = B
Unlock (Mutex)

Executed
Lock Mutex

B = 10
Flag = 1

Unlock Mutex
Lock Mutex
Flag == 1

r0 = 10
Unlock Mutex

© Vivek Kumar



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Reference Materials
● https://www.youtube.com/watch?v=mDYLRX2pbFw
● Preshing

o https://preshing.com/20120515/memory-reordering-caught-in-the-
act/

40

https://www.youtube.com/watch?v=mDYLRX2pbFw
https://preshing.com/20120515/memory-reordering-caught-in-the-act/


CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 08: Introduction to Memory Consistency

Next Lecture (L #09)
● Hardware memory consistency model
● Extra lecture on Saturday (24/09) at 2.30pm to compensate 

for missing regular lecture of 30/09

41


