
CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 09: Hardware Memory 
Consistency

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 09: Hardware Memory Consistency

Last Lecture (Recap)
● Memory latency continues to limit the performance of 

multicore processors
o Several optimizations inside processors for hiding the 

load/store latency
§ As a side effect of these optimizations, load/store inside a 

program could be reordered, and hence may not happen in 
the source code order as expected by programmer

● Memory consistency model defines a set of rules for 
valid set of reordering of two different memory 
accesses
o Both compiler and processor can perform reordering

● Sequential consistency is the most primitive form of 
memory consistency that basically says memory 
access to any location always happens atomically, 
and the effect is visible to each and every core
o Modern programming languages supports sequential 

consistency only for code block within a mutex lock/unlock 
operation (Data Race Free)

1



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 09: Hardware Memory Consistency

Today’s Class
● x86-TSO memory consistency model
● Store buffer

2



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 09: Hardware Memory Consistency

Few Alternatives to Sequential Consistency

3

READ

READ

WRITE

WRITE

READ

WRITE

WRITE

READ

Don’t start 
the next 
operation 
until the 
previous 
completes

X86-TSO (Total Store Order) 
Intel/AMD processors

READ

READ

WRITE

WRITE

READ

WRITE

WRITE

READ

PSO (Partial Store Order) 
SPARC processor

READ

READ

WRITE

WRITE

READ

WRITE

WRITE

READ

Relaxed Memory Ordering 
IBM Power PC, ARM, etc.



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 09: Hardware Memory Consistency

Let’s take a deep dive in x86-TSO model

4

READ

READ

WRITE

WRITE

READ

WRITE

WRITE

READ

Don’t start 
the next 
operation 
until the 
previous 
completes

X86-TSO (Total Store Order) 
Intel/AMD processors

READ

READ

WRITE

WRITE

READ

WRITE

WRITE

READ

PSO (Partial Store Order) 
SPARC processor

READ

READ

WRITE

WRITE

READ

WRITE

WRITE

READ

Relaxed Memory Ordering 
IBM Power PC, ARM, etc.



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 09: Hardware Memory Consistency

x86-TSO Behaviors
● Rule-1&2: Read-Read & Write-Write reordering is NOT allowed (over 

same core)

5

Core-1 Core-2

WR1: A=1 RD1: R1=B

WR2: B=1 RD2: R2=A

Question: What is an invalid set of result 
for R1 & R2? Assume initially A=B=0

Answer: R1=1 & R2= 0 



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 09: Hardware Memory Consistency

x86-TSO Behaviors
● Rule-3: Writes are NOT reordered with earlier Reads (over same core)

6

Core-1 Core-2

RD1: R1=A RD2: R2=B

WR1: B=1 WR2: A=1

Question: What is an invalid set of result 
for R1 & R2? Assume initially A=B=0

Answer: R1=1 & R2= 1 



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 09: Hardware Memory Consistency

x86-TSO Behaviors
● Rule-4a: Reads CANNOT be reordered with earlier Writes to SAME

memory locations (over same core)

7

Core-1 Core-2

WR1: A=1 WR2: B=1

RD1: R1=A RD2: R2=B

Question: What is an invalid set of result 
for R1 & R2? Assume initially A=B=0

Answer: R1=0 & R2= 0 



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 09: Hardware Memory Consistency

x86-TSO Behaviors
● Rule-4b: Reads CAN be reordered with earlier Writes to DIFFERENT

memory locations (over same core)

8

Core-1 Core-2

WR1: A=1 WR2: B=1

RD1: R1=B RD2: R2=A

Question: What is an invalid set of result 
for R1 & R2? Assume initially A=B=0

Answer: None!



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 09: Hardware Memory Consistency

x86-TSO Behaviors
● Rule-5: Concurrent Writes by two cores can be seen in different order

o Each core may perceive its own Write occurring before that of the other

9

Core-1 Core-2

WR1: A=1 WR2: B=1

RD1a: R1=A RD2a: R3=B

RD1b: R2=B RD2b: R4=A

● Can we change the orderings below?
o Core-1: WR1->RD1a->RD1b
o Core-2: WR2->RD2a->RD2b
o Not possible due to the Rules 1 and 4

● It could happen that R2 = R4 = 0
o But why?



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 09: Hardware Memory Consistency

Store Buffers

10

MESI protocol. (2022, May 2). In Wikipedia. https://en.wikipedia.org/wiki/MESI_protocol

From Wikipedia



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 09: Hardware Memory Consistency

Coherence without Store Buffer

11

Students, I have updated the quiz 
syllabus in GC, please check

Ok, got the updated 
syllabus Ok, got the updated 

syllabus

Ok, got the updated 
syllabus

9.02am
9.02am

9.02am

9am



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 09: Hardware Memory Consistency

Coherence with Store Buffer

12

Students, I have updated the quiz 
syllabus in GC, please check

Aah.. It’s the same 
syllabus Aah.. It’s the same 

syllabus

Aah.. It’s the same 
syllabus

9.02am
9.02am

Ahh,.. Let me 
update syllabus
after completing 

evaluations..

Finally 
completed all 

evaluations.. Let 
me update quiz 
syllabus on GC

9am

8:50am TA, please update on GC that 
Quiz syllabus will include 

today’s lecture as well 

8:51am

10am

9.02am



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

● Store writes in a local buffer and then proceed to next instruction immediately
o Absorbs writes faster than the next cache => prevents stalls

● The cache will pull writes out of the store buffer when it’s ready
o Aggregates writes to same cache line => reduces cache traffic

Core 1
Thread 1

Store buffer

Caches
A = 0
B = 0

Memory
A = 0
B = 0A = 1

r0 = B

Store Buffers

13Credits: James Bornholt, UW, CSE451



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Core 1
Thread 1

Store buffer

Caches
A = 0
B = 0

Memory
A = 0
B = 0

A = 1

r0 = B

Store Buffers

14Credits: James Bornholt, UW, CSE451

● Store writes in a local buffer and then proceed to next instruction immediately
o Absorbs writes faster than the next cache => prevents stalls

● The cache will pull writes out of the store buffer when it’s ready
o Aggregates writes to same cache line => reduces cache traffic



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Core 1
Thread 1

Store buffer

Caches
A = 0
B = 0

Memory
A = 0
B = 0

A = 1
r0 = B

Store Buffers

15Credits: James Bornholt, UW, CSE451

● Store writes in a local buffer and then proceed to next instruction immediately
o Absorbs writes faster than the next cache => prevents stalls

● The cache will pull writes out of the store buffer when it’s ready
o Aggregates writes to same cache line => reduces cache traffic



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Core 1
Thread 1

Store buffer

Caches
A = 0
B = 0

Memory
A = 0
B = 0

A = 1

r0 = B

Store Buffers

16Credits: James Bornholt, UW, CSE451

● Store writes in a local buffer and then proceed to next instruction immediately
o Absorbs writes faster than the next cache => prevents stalls

● The cache will pull writes out of the store buffer when it’s ready
o Aggregates writes to same cache line => reduces cache traffic



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Core 1
Thread 1

Store buffer

Caches
C = 0

Memory
C = 0

C = 1
r0 = Cr0 = C
C = 1

Store Buffers

17Credits: James Bornholt, UW, CSE451

● Store writes in a local buffer and then proceed to next instruction immediately
o Absorbs writes faster than the next cache => prevents stalls

● The cache will pull writes out of the store buffer when it’s ready
o Aggregates writes to same cache line => reduces cache traffic



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Core 1
Thread 1

Store buffer

Caches
C = 0

Memory
C = 0

r0 = Cr0 = C

C = 1

Store Buffers

18Credits: James Bornholt, UW, CSE451

● Store writes in a local buffer and then proceed to next instruction immediately
o Absorbs writes faster than the next cache => prevents stalls

● The cache will pull writes out of the store buffer when it’s ready
o Aggregates writes to same cache line => reduces cache traffic



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Core 1
Thread 1

Store buffer

Caches
C = 0

Memory
C = 0

r0 = Cr0 = C
C = 1

Store Buffers

19Credits: James Bornholt, UW, CSE451

● Store writes in a local buffer and then proceed to next instruction immediately
o Absorbs writes faster than the next cache => prevents stalls

● The cache will pull writes out of the store buffer when it’s ready
o Aggregates writes to same cache line => reduces cache traffic



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Core 1
Thread 1

Store buffer

Caches
C = 0

Memory
C = 0r0 = C

C = 1

Store Buffers

20Credits: James Bornholt, UW, CSE451

● Store writes in a local buffer and then proceed to next instruction immediately
o Absorbs writes faster than the next cache => prevents stalls

● The cache will pull writes out of the store buffer when it’s ready
o Aggregates writes to same cache line => reduces cache traffic



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Core 1
Thread 1

Store buffer

Caches
C = 0

Memory
C = 0r0 = C

C = 1

Store Buffers

21Credits: James Bornholt, UW, CSE451

● Store writes in a local buffer and then proceed to next instruction immediately
o Absorbs writes faster than the next cache => prevents stalls

● The cache will pull writes out of the store buffer when it’s ready
o Aggregates writes to same cache line => reduces cache traffic



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Core 1 Core 2 Thread 1 Thread 2
(1)

(2)

(3)

(4)Store buffer Store buffer

Memory
A = 0
B = 0

Can r0 = 0 and r1 = 0?

r0 = B r1 = A
A = 1 B = 1

22

x86-TSO Behaviors
● Rule-5: Concurrent Writes by two cores can be seen in different order

o Each core may perceive its own Write occurring before that of other

Credits: James Bornholt, UW, CSE451



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Core 1 Core 2 Thread 1 Thread 2
(1)

(2)

(3)

(4)Store buffer Store buffer

Memory
A = 0
B = 0

Can r0 = 0 and r1 = 0?

r0 = B r1 = A
A = 1 B = 1

23

x86-TSO Behaviors
● Rule-5: Concurrent Writes by two cores can be seen in different order

o Each core may perceive its own Write occurring before that of other

Credits: James Bornholt, UW, CSE451



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Core 1 Core 2 Thread 1 Thread 2
(1)

(2)

(3)

(4)Store buffer Store buffer

Memory
A = 0
B = 0

Can r0 = 0 and r1 = 0?

r0 = B r1 = A

A = 1

B = 1

24

x86-TSO Behaviors
● Rule-5: Concurrent Writes by two cores can be seen in different order

o Each core may perceive its own Write occurring before that of other

Credits: James Bornholt, UW, CSE451



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Core 1 Core 2 Thread 1 Thread 2
(1)

(2)

(3)

(4)Store buffer Store buffer

Memory
A = 0
B = 0

Can r0 = 0 and r1 = 0?

r0 = B r1 = A

A = 1

B = 1

25

x86-TSO Behaviors
● Rule-5: Concurrent Writes by two cores can be seen in different order

o Each core may perceive its own Write occurring before that of other

Credits: James Bornholt, UW, CSE451



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Core 1 Core 2 Thread 1 Thread 2
(1)

(2)

(3)

(4)Store buffer Store buffer

Memory
A = 0
B = 0

Can r0 = 0 and r1 = 0?

r0 = B r1 = A

A = 1 B = 1

26

x86-TSO Behaviors
● Rule-5: Concurrent Writes by two cores can be seen in different order

o Each core may perceive its own Write occurring before that of other

Credits: James Bornholt, UW, CSE451



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Core 1 Core 2 Thread 1 Thread 2
(1)

(2)

(3)

(4)Store buffer Store buffer

Memory
A = 0
B = 0

Can r0 = 0 and r1 = 0?

r0 = B

r1 = A

Executed

r0 = B (= 0)

A = 1

27

x86-TSO Behaviors
● Rule-5: Concurrent Writes by two cores can be seen in different order

o Each core may perceive its own Write occurring before that of other

B = 1

Credits: James Bornholt, UW, CSE451



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Core 1 Core 2 Thread 1 Thread 2
(1)

(2)

(3)

(4)Store buffer Store buffer

Memory
A = 0
B = 0

Can r0 = 0 and r1 = 0?

r0 = B r1 = A

Executed

r0 = B (= 0)

A = 1

28

x86-TSO Behaviors
● Rule-5: Concurrent Writes by two cores can be seen in different order

o Each core may perceive its own Write occurring before that of other

B = 1

r1 = A (= 0)

Credits: James Bornholt, UW, CSE451



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Core 1 Core 2 Thread 1 Thread 2
(1)

(2)

(3)

(4)Store buffer Store buffer

Memory
A = 1
B = 0

Can r0 = 0 and r1 = 0?

r0 = B r1 = A

Executed

r0 = B (= 0)

29

x86-TSO Behaviors
● Rule-5: Concurrent Writes by two cores can be seen in different order

o Each core may perceive its own Write occurring before that of other

B = 1

r1 = A (= 0)

A = 1

Credits: James Bornholt, UW, CSE451



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Core 1 Core 2 Thread 1 Thread 2
(1)

(2)

(3)

(4)Store buffer Store buffer

Memory
A = 1
B = 1

Can r0 = 0 and r1 = 0?

r0 = B r1 = A

Executed

r0 = B (= 0)

30

x86-TSO Behaviors
● Rule-5: Concurrent Writes by two cores can be seen in different order

o Each core may perceive its own Write occurring before that of other

r1 = A (= 0)

A = 1

B = 1

Store buffers: Yes!

Credits: James Bornholt, UW, CSE451



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 09: Hardware Memory Consistency

x86-TSO Behaviors
● Rule-6: Writes that are causally related, appear to all processors to 

occur in an order consistent with the causality relation 

31

Core-1 Core-2 Core-3

WR1: A=1

RD2: R1=A RD3a: R2=B

WR2: B=1 RD3b: R3=A

● If R1 = R2 = 1, can R3 = 0
o R1=1

§ Implies WR1 à RD2
o RD2 à WR2 (Rule-3)
o RD3a à RD3b (Rule-1)
o R2 = 1

§ Implies WR1àRD2àWR2àRD3a
§ Hence, R3 cannot be 0

• R3 = 1



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 09: Hardware Memory Consistency

x86-TSO Behaviors
● Rule-7: Any two Writes must appear to execute in the same 

order to all cores other than those performing the writes

33

Core-1 Core-2 Core-3 Core-4

WR1: A=1 WR2: B=1 RD3a: R1=A RD4a: R3=B

RD3b: R2=B RD4b: R4=A

● Is it possible
o R1=1, R2=0, R3=1, R4=0

● R1=1 & R2=0
o Implies WR1 à WR2 w.r.t. Core-3

● R3=1, R4=0 implies:
§ Either RD3b à RD3a

• Violates Rule-1
§ Or, WR2 à WR1 w.r.t. Core-2

• Recall value propagation property 
of cache coherence
• If A=1 has propagated to Core-3 

before B=1 then A=1 must also 
have been propagated to Core-4 
before B=1



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 09: Hardware Memory Consistency

x86-TSO Behaviors
● Rule-8: All cores agree on a single execution order of locked instructions

o I.E., Rule-7 hold true even with LOCK statements

34

Core-1 Core-2 Core-3 Core-4

WR1: A=1 WR2: B=1 RD3a: R1=A RD4a: R3=B

RD3b: R2=B RD4b: R4=A

● Is it possible
o R1=1, R2=0, R3=1, R4=0

● R1=1 & R2=0
o Implies WR1 à WR2 w.r.t. Core-3

● R3=1, R4=0 implies:
§ Either RD3b à RD3a

• Violates Rule-1
§ Or, WR2 à WR1 w.r.t. Core-2

• Recall value propagation property 
of cache coherence
• If A=1 is propagated to Core-3 

before B=1 then A=1 must also 
have been propagated to Core-4

Same example as in previous slide 
(Rule #7) except the LOCK instruction

Same example as in previous 
slide (Rule #7). Its hold true 
even with LOCK instructions



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 09: Hardware Memory Consistency

x86-TSO Behaviors
● Rule-9: Reads and Writes are NOT reordered with Locked 

instructions

35

Core-1 Core-2

WR1: A=R1 WR2: B=R3

RD1: R2=B RD2: R4=A

Core-1 Core-2

WR1: A=R1 WR2: B=R3

RD1: R2=B RD2: R4=A

Question: what would happen if we 
remove any of the LOCKED instructions?

Core-1 Core-2

WR1: A=R1 WR2: B=R3

MFENCE MFENCE

RD1: R2=B RD2: R4=AAdding MFENCE will have the same 
effect as in above examples with LOCK



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 09: Hardware Memory Consistency

Reference Materials
● Intel processor manual

o https://cdrdv2.intel.com/v1/dl/getContent/671200
§ Section 8.2

● Book
o Sorin et al., A Primer on Memory Consistency and Cache 

Coherence
o https://course.ece.cmu.edu/~ece847c/S15/lib/exe/fetch.php?media

=part2_2_sorin12.pdf

36

https://cdrdv2.intel.com/v1/dl/getContent/671200
https://course.ece.cmu.edu/~ece847c/S15/lib/exe/fetch.php?media=part2_2_sorin12.pdf


CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 09: Hardware Memory Consistency

Next Lecture (L #10)
● Language memory consistency model
● Next lecture tomorrow at 2.30pm

37


