Lecture 10: Language Memory
Model

Vivek Kumar
Computer Science and Engineering
IIIT Delhi
vivekk@iiitd.ac.in

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Last Lecture (Recap)

READ READ WRITE
READ WRITE READ
® Rule-5: Concurrent Writes by two cores can be seen in different order
o Each core may perceive its own Write occurring before that of other

Corel Core2 Thread 1 Thread 2
re =B r1=A) 3
* Store buffer ‘Store buffer @) @
A=1 B=1
Canr@ = 0 andr1 = 0? Executed
| re = B (= 0)
Memory B EANE0)
A=10
B=20

1P

x86-TSO
memory model
(Intel/AMD)

Store buffer

L
Today’s Class

® Mutex lock v/s atomic variable
® C++ memory model

D

Lecture 10: Language Memory Model

Sequential Consistency for Data Race Free (DRF)

® C++ memory model guarantees sequential consistency for
Data-Race-Free (DRF) code blocks in our program

o No guarantees whatsoever for rest of the program
= Expect reordering everywhere else!

® Sequential consistency for DRF
o No guarantee for racy programs
o Followed by almost all language memory model

o Allows all possible optimizations by compiler and hardware in rest
of the code

[E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Memory Operations in C++

® Synchronization operations

o Lock based operations
= Mutex lock/unlock

o Lock-free (A.K.A. atomic) operations

= Atomic load (read)
= Atomic store (write)

= Atomic Read-Modify-Write (RMW),
i.e., compare and swap on x86

platforms

« E.g., std::atomic<int>::fetch_add

® Non-synchronization operations

o Read/write

E CSE513: Parallel Runtimes for Modern Processors

© Vivek Kumar

Achieving synchronization in an easy-way
(high productivity, but low performance)

Achieving synchronization with some extra
effort (slightly lower productivity but, high
performance and portability)

e
Synchronizes-with Relationship

® Synchronizes-with 2 Happens-before relationship

X() happens-before Y()

Thread 1 Thread 2
X(); S
- ynchronizes-w;j
A — B();
Y(), Memory effects of X() becomes visible

to Thread-2 before it performs B(),

i.e., flushing of store buffer at Core-1
before the execution of B at Core-2

1P

Synchronization using Locks REiEs s

std::mutex M; std::bool Flag=false;

Thread 1 Thread 2 0
Memory M.lock(); %?:a\cljl—sébtl)zgre
O tions-1 ' , it performs
mot) [PushTask(): SReTemE e
Flag=true;
M.unlock(); fy”Chroniz@S_With
—> M.lock();
if(FIag) { n Memory
} PopTask(); - E)Ngl)(e)rza)tions-Z
M.unlock(); N

1P

Lecture 10: Language Memory Model

Synchronization using Locks: Summary

® Locks ensure that a read-modify-write operation on
memory is carried out atomically

o Matches with the switch based memory access analogy in
sequential consistency

® Lock operations wait for all previous memory accesses to
complete and for all buffered writes to drain to memory

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

O et
Synchronization using std::atomic<>

® Data race free variable

o We would use it when we want to achieve DRF on a single
variable instead of a block of code

o Provides inter thread synchronization

o Sequential consistency by default
= Similar to volatile in Java

= Several other memory orderings allowed!
Unlike Java!

1P

Synchronization using std::atomic<>

MO1 happens-before MO2

std::atomic<bool> Flag(false);

Memory Thread 1 Thread 2 0
Operations-1 MO1 visible to
(MO1) { PushTaSk() Svn Thread-2 before

it performs MO2

Flag.store(true): - onizes.y iy,

— if(Flag.load() == true) {
PopTask(); — Memory
} Operations-2
—(MO2)

Sequential consistency by default !!

1P

o caetUmasemeewes
Benefits of Sequential Consistency?

® Guarantees switch based atomic access to each and
every memory locations across two threads

o Happens-before edge

® Can we relax this semantics?

o Can we support multiple switches, where there is one switch for
each atomic variable?

o Can we allow reordering of "other” variables (atomic or not)
accessed before or after a single atomic variable?

= Stores to other variables can propagate between cores with
unpredictable delays (but not for a single atomic variable)

1P

et
Memory Orderings with std::atomic<>

® Relaxed Ordering . Helps in writing platform
independent programs
O memOI’y_OI'deI'_relaXGd . Don’t use memory fences
. . yourself, but let the compiler do

® Acquire-Release ordering the job for you

o memory order acquire . Helps in understanding the exact

— — intention of the programmer
O memory_order_release (improves readability)

o memory_order_acq_rel
o memory _order _consume

® Sequential consistency ordering
O memory_order_seq_cst We already saw its effect in
u Default behavior the previous slide

1P

SjuIBLISuU09 Buliep.lo Buisealou|

Lecture 10: Language Memory Model

Recall: Relaxed Memory Model

READ WRITE READ WRITE

READ WRITE WRITE READ

® All possible reordering of operations over two different
memory locations inside a thread, out of which one is an
atomic operation

® Memory operations performed by the same thread on the
same memory location are not reordered with respect to
the modification order

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

C++ Memory Order Relaxed

® Rule-1: There can never be any data race while performing
read/write to a single atomic<>A var across multiple cores

o Multiple accesses to same variable A can never be reordered

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 13

Memory Order Relaxed: Rule-1

Memory operations performed by the
same thread on the same memory

. . location are not reordered with
- m < > .
std::atomic<int X(O)’ respect to the modification order

Thread 2

X

Thread 1

X.store(1, memory_order_relaxed);
X.store(2, memory_order_relaxed);

X.store(3, memory_order_relaxed);
X.load(memory_order_relaxed);

X.store(4, memory_order_relaxed);
X.load(memory_order_relaxed);

1D

Lecture 10: Language Memory Model

C++ Memory Order Relaxed

® Rule-1: There can never be any data race while performing
read/write to a single atomic<>A var across multiple cores

o Multiple accesses to same variable A can never be reordered

® Rule-2: However, no guarantees of happens-before edge
across accesses to A over two different threads

o Operation is atomic only on atomic variable A
o A can be reordered with read/write to any other variables (atomic or
not) above or below it over a core

= After accessing A on Core-1, Core-2 cannot judge if its safe to access
other variables (atomic or not) that appeared before A’s access on

Core-1

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 15

L
Memory Order Relaxed: Rule-2

std::atomic<bool> X(fa|se), Y(fa|se); MO1 happens-before MO2

Memo
Oporations-1 Thread 1 Thread 2 e
(MO1) {X.store(true, memory_order_relaxed); Thread-2 before /
Y .store(true, memory_order_relaxed); it performs MO2
— Synch

if(Y.load(memory_order _relaxed) == true) {
assert(X.load(memory_order_relaxed))

} k Memory
Operations-2

Not guaranteed (MO2)

es-with

1P

Lecture 10: Language Memory Model

Memory Order Relaxed: Rule-2

All possible reordering of

i operations over two
std::atomic<bool> X(false), Y(false); d?fferent memory locations

inside a thread, out of which
Thread 1 Thread 2 one is an atomic operation

X.store(true, memory_order_relaxed);
Y.store(true, memory_order_relaxed);

— Synch

Pes-with if(Y.load(memory order_relaxed) == true) {

assert(X.load(memory_order_relaxed))
AN

Not guaranteed

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 17

Acquire and Release: Concepts

std::mutex M;

Allowed Reordering

v/

lllegal Reordering

[/ Some memory operations
M.lock();

Lock “Acquire”

/I Critical section memory operations

W urlook ;]

[/ Some memory operations

D

Lecture 10: Language Memory Model

Memory Order Acquire/Release: Concepts

std::atomic<int> X, Y, Z;

/[Some memory operations
X.store(1, memory_order_seq_cst); @

ﬂ /[Some memory operations
j Y.load(memory order_relaxed);

/[Some memory operations

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

19

Lecture 10: Language Memory Model

Memory Order Acquire/Release: Concepts

std::atomic<int> X, Y, Z;

/[Some memory operations
X.store(1, memory_order_seq_cst); @
ﬂ /[Some memory operations
j Y.load(memory order_relaxed);
/[Some memory operations

Z.load(memory_order_acquire);
/[Some memory operations

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

20

Lecture 10: Language Memory Model

Memory Order Acquire/Release: Concepts

std::atomic<int> X, Y, Z;

/[Some memory operations
X.store(1, memory_order_seq_cst); @
ﬂ /[Some memory operations
j Y.load(memory order_relaxed);
/[Some memory operations
Z.store(1, memory_order_release);

/[Some memory operations

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

21

Memory Order Acquire/Release: Example

MO1 happens-before MO2

std::atomic<bool> A(false);
int non_atomic=0;

Thread 1 Thread 2 »

MO1 visible to
non_atomic =10 // Memory Operations MO1 Thread-2 before
A.store(true, memory_order_release); it performs MO2

Synchro,,,-ZeS_ = f(A.load(memory_order_acquire) == true) {
With 7 Memory Operations MO2
assert(non_atomic == 10)

}

Yes, this example looks same as
in sequential consistency order

1P

Memory Order Acquire/Release: Example

std::atomic<bool> A(false), B(false);
int non_atomic=0;

MO1 happe’ -before MO2

Thread 1 Thread 2 T
MO1 visib.~ to
non_atomic =10 // Memory Operations MO1 Thread-2 be> -e
A.store(true, memory_order_release); it perform . MO.

Synchro r = if(B.load(memory_order_acquire) == true) {
With /7 Memory Operations MO2

assert(non_atomic == 10)
}

NOT same as in sequential consistency order
Acquire/Release ensures synchronization between
threads that are storing and loading the same
atomic object (also called as half-synchronization)

1P

Lecture 10: Language Memory Model

Memory Order Acquire/Release: Example
std::atomic<bool> A(false), B(false);
int non_atomic = 0;

Thread 1 Thread 2 Thread 3

non_atomic = 10;
A.store(true, memory_order_release);

Svync . =P if(A.load(memory_order_acquire) == true) {
y hronlzes-wlth B.store(true, memory_order_release);

} S
yYn
Chr Oni> . o
G&Wifh if(B.load(memory_order_acquire) == true) {

assert(non_atomic == 10);
}
Acquire/Release ensures synchronization between
threads that are storing and loading the same
atomic object (also called as half-synchronization)

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 24

Achieving C++ Memory Orders on x86

Recall:

® x86-TSO memory consistency model ® Rule-4b: Reads CAN be.
reordered with earlier Writes

to DIFFERENT memory

locations (over same core)

READ READ WRITE
| Core1 | Core2

\g/wm: ATl WRZ:B=1 o~y
RD1:R1=B RD2:R2=A

READ WRITE READ

® x86 CPUs have FIFO store buffers

Hence, if a write in store buffer of Core-1 is
now visible to Core-2, then all previous writes

from Core-1 are also now visible to Core-2

1P

et
Achieving C++ Memory Orders on x86

Atomic Operation Compiler Reordering x86 implementation
A.store(1, memory_order_relaxed) Yes completely MOV (into memory)
A.load(memory_order_relaxed) Yes completely MOV (from memory)
A.store(1, memory _order_release) Only as much permissible (Slide # 18) MOV (into memory)
A.load(memory_order_acquire) Only as much permissible (Slide # 18) MOV (from memory)
A.store(1, memory_order_seq_cst) Not at all MOV (into memory), MFENCE
A.load(memory_order_seq_cst) Not at all MOV (from memory)

Source: https://www.cl.cam.ac.uk/~pes20/cpp/cppOxmappings.html

1D

Reference Materials

® https://preshing.com/20120913/acquire-and-release-
semantics/

® Atomic weapons — Herb Sutter
o https://www.youtube.com/watch?v=A8eCGOqgvH4

D

https://preshing.com/20120913/acquire-and-release-semantics/

o et
Next Lecture (L #11)

® Non uniform memory access architecture

D

