
CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory 
Model

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Last Lecture (Recap)

● x86-TSO 
memory model 
(Intel/AMD)

● Store buffer

1



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Today’s Class
● Mutex lock v/s atomic variable 
● C++ memory model

2



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

● C++ memory model guarantees sequential consistency for 
Data-Race-Free (DRF) code blocks in our program
o No guarantees whatsoever for rest of the program

§ Expect reordering everywhere else!

● Sequential consistency for DRF
o No guarantee for racy programs
o Followed by almost all language memory model
o Allows all possible optimizations by compiler and hardware in rest 

of the code

3

Sequential Consistency for Data Race Free (DRF)



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Memory Operations in C++
● Synchronization operations 

o Lock based operations
§ Mutex lock/unlock

o Lock-free (A.K.A. atomic) operations
§ Atomic load (read)
§ Atomic store (write)
§ Atomic Read-Modify-Write (RMW), 

i.e., compare and swap on x86 
platforms
• E.g., std::atomic<int>::fetch_add

● Non-synchronization operations
o Read/write

4

Achieving synchronization in an easy-way 
(high productivity, but low performance)

Achieving synchronization with some extra 
effort (slightly lower productivity but, high 
performance and portability)



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Synchronizes-with Relationship
● Synchronizes-with à Happens-before relationship

5

Thread 1 Thread 2

X();
A(); B();

Y();

Synchronizes-with

X() happens-before Y()

Memory effects of X() becomes visible 
to Thread-2 before it performs B(), 

i.e., flushing of store buffer at Core-1 
before the execution of B at Core-2



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Synchronization using Locks

6

Thread 1 Thread 2
M.lock();
PushTask();
Flag=true;
M.unlock();

M.lock();
if(Flag) {

PopTask();
}
M.unlock();

std::mutex M; std::bool Flag=false;

Synchronizes-with

Memory 
Operations-1 
(MO1)

Memory 
Operations-2 
(MO2)

MO1 visible to 
Thread-2 before 
it performs MO2

MO1 happens-before MO2



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Synchronization using Locks: Summary
● Locks ensure that a read-modify-write operation on 

memory is carried out atomically 
o Matches with the switch based memory access analogy in 

sequential consistency

● Lock operations wait for all previous memory accesses to 
complete and for all buffered writes to drain to memory

7



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Synchronization using std::atomic<>
● Data race free variable

o We would use it when we want to achieve DRF on a single 
variable instead of a block of code

o Provides inter thread synchronization
o Sequential consistency by default

§ Similar to volatile in Java
§ Several other memory orderings allowed!

• Unlike Java!

8



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Synchronization using std::atomic<>

9

Thread 1 Thread 2
PushTask();
Flag.store(true);

if(Flag.load() == true) {
PopTask();

}

std::atomic<bool> Flag(false);

Synchronizes-with

Memory 
Operations-1 
(MO1)

Memory 
Operations-2 
(MO2)

MO1 visible to 
Thread-2 before 
it performs MO2

MO1 happens-before MO2

Sequential consistency by default !!



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Benefits of Sequential Consistency?
● Guarantees switch based atomic access to each and 

every memory locations across two threads
o Happens-before edge

● Can we relax this semantics?
o Can we support multiple switches, where there is one switch for 

each atomic variable?
o Can we allow reordering of ”other” variables (atomic or not) 

accessed before or after a single atomic variable?
§ Stores to other variables can propagate between cores with 

unpredictable delays (but not for a single atomic variable)

10



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Memory Orderings with std::atomic<>

11

● Relaxed ordering
o memory_order_relaxed

● Acquire-Release ordering
o memory_order_acquire
o memory_order_release
o memory_order_acq_rel
o memory_order_consume

● Sequential consistency ordering
o memory_order_seq_cst

§ Default behavior
We already saw its effect in 

the previous slide

Increasing ordering constraints

1. Helps in writing platform 
independent programs

2. Don’t use memory fences 
yourself, but let the compiler do 
the job for you

3. Helps in understanding the exact 
intention of the programmer 
(improves readability)



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Recall: Relaxed Memory Model

● All possible reordering of operations over two different
memory locations inside a thread, out of which one is an 
atomic operation

● Memory operations performed by the same thread on the 
same memory location are not reordered with respect to 
the modification order

12

READ

READ

WRITE

WRITE

READ

WRITE

WRITE

READ



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

C++ Memory Order Relaxed
● Rule-1: There can never be any data race while performing 

read/write to a single atomic<>A var across multiple cores
o Multiple accesses to same variable A can never be reordered

● Rule-2: However, no guarantees of happens-before edge 
across accesses to A over two different threads
o Operation is atomic only on atomic variable A
o A can be reordered with read/write to any other variables (atomic or 

not) above or below it over a core
§ After accessing A on Core-1, Core-2 cannot judge if its safe to access 

other variables (atomic or not) that appeared before A’s access on 
Core-1

13



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Memory Order Relaxed: Rule-1

14

Thread 1 Thread 2
X.store(1, memory_order_relaxed);
X.store(2, memory_order_relaxed);

X.load(memory_order_relaxed);

X.store(4, memory_order_relaxed);

X.store(3, memory_order_relaxed);

X.load(memory_order_relaxed);

std::atomic<int> X(0);
X

1
0

2
3

4

Memory operations performed by the 
same thread on the same memory 
location are not reordered with 
respect to the modification order



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

C++ Memory Order Relaxed
● Rule-1: There can never be any data race while performing 

read/write to a single atomic<>A var across multiple cores
o Multiple accesses to same variable A can never be reordered

● Rule-2: However, no guarantees of happens-before edge 
across accesses to A over two different threads
o Operation is atomic only on atomic variable A
o A can be reordered with read/write to any other variables (atomic or 

not) above or below it over a core
§ After accessing A on Core-1, Core-2 cannot judge if its safe to access 

other variables (atomic or not) that appeared before A’s access on 
Core-1

15



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Memory Order Relaxed: Rule-2

16

Thread 1 Thread 2
X.store(true, memory_order_relaxed);
Y.store(true, memory_order_relaxed);

if(Y.load(memory_order_relaxed) == true) {
assert(X.load(memory_order_relaxed))

}

std::atomic<bool> X(false), Y(false);

Not guaranteed

Memory 
Operations-1 
(MO1)

Memory 
Operations-2 

(MO2)

MO1 visible to 
Thread-2 before 
it performs MO2

MO1 happens-before MO2

Synchronizes-with



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Memory Order Relaxed: Rule-2

17

Thread 1 Thread 2
X.store(true, memory_order_relaxed);
Y.store(true, memory_order_relaxed);

if(Y.load(memory_order_relaxed) == true) {
assert(X.load(memory_order_relaxed))

}

std::atomic<bool> X(false), Y(false);

Synchronizes-with

Not guaranteed

All possible reordering of 
operations over two 
different memory locations 
inside a thread, out of which 
one is an atomic operation



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Acquire and Release: Concepts

18

std::mutex M;

// Some memory operations
M.lock();

// Critical section memory operations

M.unlock();
// Some memory operations

Lock “Acquire”

Lock “Release”

Allowed Reordering Illegal Reordering



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Memory Order Acquire/Release: Concepts

19

std::atomic<int> X, Y, Z;

// Some memory operations
X.store(1, memory_order_seq_cst);
// Some memory operations
Y.load(memory_order_relaxed);
// Some memory operations



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Memory Order Acquire/Release: Concepts

20

std::atomic<int> X, Y, Z;

// Some memory operations
X.store(1, memory_order_seq_cst);
// Some memory operations
Y.load(memory_order_relaxed);
// Some memory operations
Z.load(memory_order_acquire);
// Some memory operations



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Memory Order Acquire/Release: Concepts

21

std::atomic<int> X, Y, Z;

// Some memory operations
X.store(1, memory_order_seq_cst);
// Some memory operations
Y.load(memory_order_relaxed);
// Some memory operations
Z.store(1, memory_order_release);
// Some memory operations



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Memory Order Acquire/Release: Example

22

Thread 1 Thread 2
non_atomic =10 // Memory Operations MO1
A.store(true, memory_order_release);

if(A.load(memory_order_acquire) == true) {
// Memory Operations MO2
assert(non_atomic == 10)

}

std::atomic<bool> A(false);
int non_atomic=0;

Synchronizes-with

MO1 visible to 
Thread-2 before 
it performs MO2

MO1 happens-before MO2

Yes, this example looks same as 
in sequential consistency order



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Memory Order Acquire/Release: Example

23

Thread 1 Thread 2
non_atomic =10 // Memory Operations MO1 
A.store(true, memory_order_release);

if(B.load(memory_order_acquire) == true) {
// Memory Operations MO2
assert(non_atomic == 10)

}

std::atomic<bool> A(false), B(false);
int non_atomic=0;

Synchronizes-with

MO1 visible to 
Thread-2 before 
it performs MO2

MO1 happens-before MO2

NOT same as in sequential consistency order
Acquire/Release ensures synchronization between 

threads that are storing and loading the same 
atomic object (also called as half-synchronization)



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Memory Order Acquire/Release: Example

24

Thread 1 Thread 2

non_atomic = 10;
A.store(true, memory_order_release);

if(A.load(memory_order_acquire) == true) {
B.store(true, memory_order_release);

}

std::atomic<bool> A(false), B(false);
int non_atomic = 0;

Synchronizes-with

Thread 3

if(B.load(memory_order_acquire) == true) {
assert(non_atomic == 10);

}

Synchronizes-with

NOT same as in sequential consistency order
Acquire/Release ensures synchronization between 

threads that are storing and loading the same 
atomic object (also called as half-synchronization)



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Achieving C++ Memory Orders on x86
Recall:
● x86-TSO memory consistency model

● x86 CPUs have FIFO store buffers

25

READ

READ

WRITE

WRITE

READ

WRITE

WRITE

READ

Hence, if a write in store buffer of Core-1 is 
now visible to Core-2, then all previous writes 

from Core-1 are also now visible to Core-2



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Achieving C++ Memory Orders on x86
Atomic Operation Compiler Reordering x86 implementation

A.store(1, memory_order_relaxed) Yes completely MOV (into memory)

A.load(memory_order_relaxed) Yes completely MOV (from memory)

A.store(1, memory_order_release) Only as much permissible (Slide # 18) MOV (into memory)

A.load(memory_order_acquire) Only as much permissible (Slide # 18) MOV (from memory)

A.store(1, memory_order_seq_cst) Not at all MOV (into memory), MFENCE

A.load(memory_order_seq_cst) Not at all MOV (from memory)

26

Source: https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Reference Materials
● https://preshing.com/20120913/acquire-and-release-

semantics/
● Atomic weapons – Herb Sutter

o https://www.youtube.com/watch?v=A8eCGOqgvH4

27

https://preshing.com/20120913/acquire-and-release-semantics/


CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 10: Language Memory Model

Next Lecture (L #11)
● Non uniform memory access architecture

28


