Lecture 11: Non Uniform Memory
Access Architecture

Vivek Kumar
Computer Science and Engineering
IIIT Delhi
vivekk@iiitd.ac.in

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

X() happens-before Y()

Thread 1

int non_atomic=0;

_ std::atomic<bool> A(false), B(false);

non_atomic =10 // Memory Operations MO1
A.store(true, memory_order_release);

Thread 2

MOL1 visib. ~ to

Thread-2 be> -e
it perform . MO.

Synchro o if(B.load(memory_order_acaquire) == true) {
With 7 Memory Operations MO2

assert(non_atomic == 10)

}

Operations-1

\o 4

Thread 1 Thread 2
X . Memory effects of X() becomes visible
() ’ to Thread-2 before it performs B(),
A() Synchronizes.with i.e., flushing of store buffer at Core-1
’ before the execution of B at Core-2
std::atomic<bool> Flag(false);
Memory Thread 1 Thread 2 v
Operations-1 MO1 visible to
(MO1) { PushTask(); Thread-z before
S}’nchro ; it performs MO2
Flag.store(true); wh _
if(Flag.load() == true) {
PopTask(); Memory
} Operations-2
(MO2)
std::atomic<bool> X(false), Y(false); Nl nner Do Mok
Memory

(MO1){X.store(true, memory_order_relaxed);

2

std::atomic<int> X, Y, Z;

/l Some memory operations

X.store(1, memory_order_seq_cst);
/l Some memory operations

Y.load(memory_order_relaxed);
/l Some memory operations

Z.load(memory_order_acquire);
/l Some memory operations

Thread 1 Thread 2

MO1 visible to

Thread-2 before }
it performs MO2

Y.store(true, memory_order_relaxed);
- Sy"ChE%S-with if(Y.load(memory_order_relaxed) == true) {
+ assert(X.Ioad(memozy_order_relaxed))}

}

Memory
Operations-2
(MO2)

Not guaranteed

Last Lecture
(Recap)

s
Today’s Lecture

=>® Non uniform memory accesses
® Page allocation policies
® NUMA aware parallel runtime

D

Lecture 11: Non Uniform Memory Access Architecture

Recall: Virtual VS. Physical Memory

® Programs refers to virtual memory addresses

o Memory can be thought of large array of bytes
o System provides private address space to each of the processes

® Problems

o How does the memory for all the processes fit?

= Virtual address can address exabytes (64-bit), whereas physical memory
ranges between some gigabytes

o Processes shouldn’t access/change other processes address space

® Solution
o OS manages the mapping of the virtual memory to physical memory

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Recall: Virtual VS. Physical Memory

PA virtual
address
space

PB virtual
address
space

E CSE513: Parallel Runtimes for Modern Processors

Physical
memory ®
®
®
Swap space

© Vivek Kumar

Granularity of address
spaces (virtual or
physical

o Typically 4KB

= Linux OS makes it
possible to support larger
page size

Virtual memory helps in
efficient use of DRAM

o Uses DRAM as a cache
o Non-cached data on disk

Simplifies memory
management

Lecture 11: Non Uniform Memory Access Architecture

Uniform Memory Access (UMA)

® All memoryis
=)o\ |\ =)\ |\ o\ = g
DA DAl A equidistant from all
the cores

o Equal access times
to memory units

® Also known as CC-

On chip memory controller

UMA
Caches o Cache Coherent
UMA

Core

® Disadvantage”

o Hard to scale with
Increasing number
of cores

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 5

Lecture 11: Non Uniform Memory Access Architecture

Virtual to Physical Mapping in UMA

DRAW DRAN DRAW ® As memory is
equidistant, same
latency to access
each physical
pages of Pg’s

Caches virtual address
Core Space
o Equal number of
hops
PB virtual
address
space

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Non Uniform Memory Access (NUMA)

DRAM | DRAM | DRAM DRAM | DRAM | DRAM
R S . —— — —
i On chip memory i | On chip memory i

controller i i controller

On chipjmemory i | On chip fnemory
confroller i i contrpller

E CSE513: Parallel Runtimes for Modern Processors

Generally made b sicall
Im?(tV\}/O or morg PEL}/ |Icorey
et on the

proce SOrs |e SOC
same motherboard
rocessor ca alsoh e
° Nﬂﬂ%%rcﬁﬁecture Pe E%’YC
processors

One socket can directly access
memory e1“another sogke(f‘

@ Both DRAM and caches (e.g., LLC)

Cache coherent NUMA
architecture called as CC-NUMA

o Cache Coherent NUMA

8ch rent interconnect (eg
rocessors use o
low Iatenc band WI

memory agcesses across he
NUMA domains

© Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Virtual to Physical Mapplng in NUMA

DRAM | DRAM | DRAM DRAM | DRAM | DRAM
R S . —— — —
i On chip memory i | On chip memory i

controller i i controller

On chipjmemory i | On chip fnemory
confroller i i contrpller

E CSE513: Parallel Runtimes for Modern Processors

Each NPMA dofmaln has its own
physical pool of memory

ocal memor ffers higher
b mdtﬁnan}d ower Ia?ency than
remote memory

if it UMA t
}qeerr]el rlnesrr?o(?C .’§ ayldreS sse%mwth a

8'1(1)‘ al address ?pace accessing
erent parts of memory can

esult in %ﬁerent Iatency and
andwidt
o Imaging LLC on socket-1 IELS aorling a

cache I|£1e residing on the
socke

eeJ%rmaigc(::lenca only be

com a |t data Inside the
samg%ﬁm o
o What about the energy usage?

© Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Getting CPU & NUMA Information on Linux

vivek®hippo:~$ numactl —-hardware
available: 4 nodes (90-3)
node @ cpus: 012 3 45 6 7 32 33 34 35 36 37 38 39

node size: 15943 MB
'node free: 14753 MB
node cpus: 8 9 10 11 12 13 14 15 40 41 42 43 44 45 46 47

node size: 16121 MB
node free: 10956 MB

size: 16121 MB
free: 13932 MB
cpus: 24 25 26 27 28 29 30 31 56 57 58 59 60 61 62 63
size: 16120 MB
node 3 free: 15058 MB
node distances:
norde © 1 2 3
« 30 16 16 16
16 10 16 16
16 16 10 16
16 16 16 196

node
node

relative node
node

0
0
1
1
1
node 2 cpus: 16 17 18 19 20 21 22 23 48 49 50 51 52 53 54 55
2
2
3
3
3
d

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

ittty AessAnieore
Recursive Array Sum on NUMA Processor

int array_sum(int low, int high) { Async would be executing on cores of both
if(high - low > THRESHOLD) { the sockets
int mid = (low + high)/2;
future<int> left = async([=]() { return array_sum(low, mid); }); [Overheads?
right = array_sum(mid, high);

: left.got() i o Remote DRAM accesses
return le .ge + r N
} els: (& '8 o Cache lines shared across caches on both
St s o G socket. Can we fix it?
i o s bl . Easily resolvable by setting THRESHOLD as
for(int i=low; lfh%gh’ 1+4) o multlgle of cache I|r¥e S|ze%64Bytes on x86)
sum += array[i];
) ® Physical page allocations
return sum;
} o Only on socket-1
} = Local DRAM accesses at socket-1, but
remote DRAM accesses at socket-2
.Range=Low:High Only on socket-2
=Low: i = igh)/2: Hi = Local DRAM accesses at socket-2, but
Range=Low : (Low+High)/2 "/‘async-o ~ Range=(Low+High)/2: High remote DRAM acoesses at Socket: 2
async-4 async-1 Shared between socket-1 and socket-2

! O O o
async-6 ~ . async: -5 async-3/ async- 2

= Random work-stealing will lead to remote
DRAM accesses

Why we are not
using Fib as an
example here?

On chip memory On chip memory
controller controller

ittty AessAnieore
Recursive Array Sum on NUMA Processor

int array_sum(int low, int high) {
if(high - low > THRESHOLD) {
int mid = (low + high)/2;
future<int> left = async([=]() { return array_sum(low, mid); }); o
right = array_sum(mid, high);
return left.get() + right;
} else {
int sum = 0;
for(int i=low; i<high; i++) {
sum += array[i];
} Two issues to resolve:

return sum; a) Ensuring pages allocations at right place
} b) Partitioning computation at each socket

.Range =Low : High
Range=Low : (Low+High)/2 N\

.7 asyn; 0
O

async-6 g AN async5 gsync-3 async/Z

async-4~

Async would be executing on cores of both
the sockets

Overheads?

o Remote DRAM accesses

o Cache lines shared across caches on both
socket
. Easily resolvable by setting THRESHOLD as

multiple of cache line size (64Bytes on x86)

Physical page allocations

o Only on socket-1
= Local DRAM accesses at socket-1, but
remote DRAM accesses at socket-2
o Only on socket-2
= Local DRAM accesses at socket-2, but
remote DRAM accesses at socket-2
o Shared between socket-1 and socket-2
= Random work-stealing will lead to remote

DRAM accesses

High performance only if

o Physical pages for left half of the array on
socl&e% '11 RAM and left subtree executes on
socke

o Physical p Bes for right half of the array on
socte: % RAM and right subtree executes on
socke

s
Today’s Lecture

® Non uniform memory accesses
=)>® Page allocation policies
® NUMA aware parallel runtime

D

T
Page Allocation Policy on Linux

int * ar new int[2048]; // Two pages

® First Touch Policy

o Calling malloc/new doesn’t allocate the
physical pages on a NUMA node

Lecture 11: Non Uniform Memory Access Architecture

Page Allocation Policy on Linux

int * arr.‘ay = new int!2048]; // Two pages . .

For(inte 1300 Lesiees o) ® First Touch Policy

: o Calling malloc/new doesn’t allocate the

physical pages on a NUMA node

= |tis allocated only when those addresses are
first “touched”

7 = The physical page is allocated during page-

fault handling

. A hardware fault will be generated when a
process touches an address (page fault) that
has not been used yet

o Allocates the physical page in the memory
closest to the thread/process accessing this

page for the first time
= Default policy on Linux

DRAM

On chip memory
controller

[E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 14

Page Allocation Policy on Linux

int * array = new int[2048]; // Two pages
int mid = 2048/2; .
std::thread T1([=]() {
for(int i=0; i<1024; i++) {
array[i] = ©;

}
})s
std::thread T1([=]() {
for(int i=1024; 1<2048; i++) {
array[i] = @;

D

First Touch Policy
o Where both the pages will be allotted in the
shown program?

= Not guaranteed, may even be on a single
socket if both the threads are going to run on
a single socket

How to ensure each

thread runs on
different socket?

Page Allocation Policy on Linux

int * array = new int[2048]; // Two pages

iEE;TiﬁpZaieﬁffi]o { //set affinity(C1) . FirSt TOUCh PO“Cy

for(int i=0; i<1024; i++) {

array[i] = o; o Where both the pages will be allotted in the
. shown program?
it Lotose: Lroongs sany e = Not guaranteed, may even be on a single
array[i] = 0; socket if both the threads are going to run on
" g a single socket
s « To ensure they are allotted on different
sockets, they must be mapped to two different
sockets

. Set the CPU affinity of a thread using
sched_setaffinity before letting them “touch”
the memory

. Even if there are only two threads, and two
dual core sockets, why should we still set their
affinities on two different sockets?

. Lesser contention over on-chip memory
controller

On chip memo
controller

On chip memory
controller

1P

Page Allocation Policy on Linux

int * array = new int[2048]; // Two pages
int mid = 2048/2;
std::thread T1([=]() { //set affinity(C1)
for(int i=0; i<1024; i++) {
array[i] = ©;
}
1
std::fthread T1([=]() {//set affinity(C3)
fori(int i=1024; i<2048; i++) {
array[i] = ©;

})s

® First Touch Policy

o Where both the pages will be allotted in the
shown program?

= Not guaranteed, may even be on a single
socket if both the threads are going to run on
a single socket

To ensure they are allotted on different

Can we improve sockets, they must be mapped to two different
the performance? sockets

. Set the CPU affinity of a thread using
sched_setaffinity before letting them “touch”
the memory

Even if there are only two threads, and two
dual core sockets, why should we still set their
affinities on two different sockets?

. Lesser contention over on-chip memory
controller

T
Page Allocation Policy on Linux

posix_memalign(&array, ...); // Two pages . .
std::thread T1([=]() { //set affinity(C1) . FIrSt TOUCh POIICy _
e A o Another way to achieve the same result, but
1) .
std::thread T1([=]() {//set affinity(C3) with only a few CPU CYCleS
i | = Using posix_memaling
F

On chip memo
controller

On chip memory
controller

Lecture 11: Non Uniform Memory Access Architecture

Alternative Allocation Policies

numactl [--all | -a] [--interleave= | -i <nodes>] [--preferred= | -p <node>]
[--physcpubind= | -C <cpus>] [--cpunodebind= | -N <nodes>]
[--membind= | -m <nodes>] [--localalloc | -1] command args ...
numactl [--show | -s]
numactl [--hardware | -H]
numactl [--length | -1 <length>] [-—offset | -o <offset>] [--shmmode | -M <shmmode>]
[—-strict | -t]
[-—shmid | -I <id>] —-shm | -S <shmkeyfile>
[-—shmid | -I <id>] ——file | -f <tmpfsfile>
[—-huge | -u]l [--touch | -T]
memory policy | ——dump | -d | ——dump-nodes | -D

memory policy is —-interleave | -i, —-preferred | -p, ——membind | -m, --localalloc | -1

<nodes> is a comma delimited list of node numbers or A-B ranges or all.
Instead of a number a node can also be:
netdev:DEV the node connected to network device DEV
file:PATH the node the block device of path is connected to
ip:HOST the node of the network device host routes through
block:PATH the node of block device path
pci:[seg:]bus:dev[:func] The node of a PCI device
<cpus> is a comma delimited list of cpu numbers or A-B ranges or all
all ranges can be inverted with !
all numbers and ranges can be made cpuset-relative with +
the old --cpubind argument is deprecated.
use ——cpunodebind or —--physcpubind instead
<length> can ha!e g (GB), m (MB) or k (KB) suffixes

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

® numactl

O

Linux tool to control
NUMA policy for
launching
processes or
allocating shared
memory

Controls the policy
for the entire
program, but not to
Individual memory
areas

® Libnuma

O

Shared library that
can be linked to
programs and
offers several
policies for NUMA
allocations that
could be used
differently for
different memory
areas

19

Lecture 11: Non Uniform Memory Access Architecture

Few Routines from libnuma

o numa_max_node()

» How many nodes are there?
o numa_alloc_onnode()

= Alloc memory on a particular node
o numa_alloc_local()

= Alloc memory on the current “local” node
o numa_alloc_interleaved()

= Places memory pages across all the available NUMA nodes in round robin
o numa_free()

* Free the memory
o nhuma_run_on_node()

» Run thread and it’s children on this node
o nhuma_node_of cpu()

= My current NUMA node

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

o leuettNenUnomenon AcessAhiesre
Frequently used Page Allocation Policies

® Allocating an integer array of size 8192

o Assuming page aligned memory allocation, total pages are 8 (4KB each)
= Assume physical page ids P1-P8
o Total 4 NUMA nodes
. N1-N3
® Block cyclic
o Block size is ratio of total pages and number of NUMA nodes

P1-P2 P3-P4 P5-P6 P1-P8
Question: which of these two policies
N; N, N N4 -
you would choose, if you have to run
® Interleaved recursive task parallel implementation
of vector addition using the traditional
random work-stealing runtime?
| 6| | P8 |
N2 N3 N4

1P

s
Today’s Lecture

® Non uniform memory accesses
® Page allocation policies
=>® NUMA aware parallel runtime

D

NUMA Aware Parallel Runtime: Naive Approach

Range=Low : High

Range= O E'énr?e; o Recursive task
Low : (Low+High)2__— (Low igh)/2:: Hig parallel vector
‘ async-0 ‘ addition
async-4/'/ \‘ async-1 / ‘
async-6 g AN async5 async3 async2

‘QC. XXX ‘

o dueitNoaUnomMemoyAmessAchioowe
NUMA Aware Parallel Runtime: Naive Approach

R_ o S read the memory evenly across all the
ange=Low : High MA nOdeS
Range= Range=
Low: (Low+Highy2 . (Low+High)/2:High o Reduce bottleneck at individual node’s memory
‘ async-0 ‘ controller
async-d async-1 o Improving locality
async-6 - . async-5 . async-3/ . async- 2

On chip memory On chip memory
controller controller

o dueitNoaUnomMemoyAmessAchioowe
NUMA Aware Parallel Runtime: Naive Approach

R_ o S read the memory evenly across all the
ange=Low : High MA d
Range= Range= noaes
Low: (Low+High)y2 " (Low*High)/2: High o) Reduce bottleneck at individual node’s memory
‘ async-0 ‘ controller

async-d async-1 o Improving locality

b R as ,,05‘) 3‘__) 2‘ ® Create teams of worker threads at each
- °. P y‘ o ". ‘asy‘ o NUMA node where they can steal tasks

from their local team members

On chip memory On chip memory
controller controller

o dueitNoaUnomMemoyAmessAchioowe
NUMA Aware Parallel Runtlme Naive Approach

el e IR
Range=Low : High %read the memory evenly across all the

EEEEN Range= ‘ Range= MA nodes

Low: (Low+Highy2 " (Low+High)/2: High o Reduce bottleneck at individual node’s memory

@ e @) controller

async-4 -~ ‘ async-1 -~ o) Improving locality
6N as ,,05‘ 3‘__ 2‘ ® Create teams of worker threads at each
asy"C. P y‘ O asy“‘;' ‘asy’“ o NUMA node where they can steal tasks
from their local team members

® Give each team a seed task as per the
locality of the data associated with that task
P4 |

On chip memory On chip memory
controller controller

NUMA Aware Parallel Runtlme Naive Approach

%read the memory evenly across all the
MA nodes

o Reduce bottleneck at individual node’s memory
controller

o Improving locality

® Create teams of worker threads at each
NUMA node where they can steal tasks

Irregular Execution DAG Regular Execution DAG from the”' Iocal team members
® Give each team a seed task as per the
locality of the data associated with that task
ey 2] ® Dealing with load imbalance (if any)?

o Allow stealing from a remote team

@ q(rate the memory (5) ?es associated with that
task from remote no local node

. numa_move_pages() in libnuma

On chip memory On chip memory
controller controller

NUMA Aware Parallel Runtlme Naive Approach

%read the memory evenly across all the
MA nodes

o Reduce bottleneck at individual node’s memory
controller

o Improving locality

® Create teams of worker threads at each
NUMA node where they can steal tasks
Irregular Execution DAG Regular Execution DAG from the“" Iocal team members

® Give each team a seed task as per the
locality of the data associated with that task

® Dealing with load imbalance (if any)?
o Allow stealing from a remote team

o) %(rate the memory pages associated with that
from remote no e to local node

. numa_move_pages() in libnuma

® \What if its not so easy to map seed tasks?
w3 Y w4 o We will see in next lecture

W1 4 W2

D

T
Reading Materials

® NUMA APIs for Linux

o http://developer.amd.com/wordpress/media/2012/10/LibNUMA-
WP-fv1.pdf

® Page migration
o https://www.kernel.org/doc/html/v5.4/vm/page _migration.html

o https://www.intel.com/content/www/us/en/developer/articles/techni
cal/measuring-impact-of-numa-migrations-on-
performance.html#gs.can3e4

1P

http://developer.amd.com/wordpress/media/2012/10/LibNUMA-WP-fv1.pdf
https://www.kernel.org/doc/html/v5.4/vm/page_migration.html
https://www.intel.com/content/www/us/en/developer/articles/technical/measuring-impact-of-numa-migrations-on-performance.html

o e teemney e Ao
Next Lecture (L #12)

® Recursive task parallelism on NUMA architecture

D

