
CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory
Access Architecture

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Last Lecture
(Recap)

1

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Today’s Lecture
● Non uniform memory accesses
● Page allocation policies
● NUMA aware parallel runtime

2

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Recall: Virtual VS. Physical Memory
● Programs refers to virtual memory addresses

o Memory can be thought of large array of bytes
o System provides private address space to each of the processes

● Problems
o How does the memory for all the processes fit?

§ Virtual address can address exabytes (64-bit), whereas physical memory
ranges between some gigabytes

o Processes shouldn’t access/change other processes address space

● Solution
o OS manages the mapping of the virtual memory to physical memory

3

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Recall: Virtual VS. Physical Memory

4

Disk

Swap space

Physical
memory

PB virtual
address
space

PA virtual
address
space

● Granularity of address
spaces (virtual or
physical)
o Typically 4KB

§ Linux OS makes it
possible to support larger
page size

● Virtual memory helps in
efficient use of DRAM
o Uses DRAM as a cache
o Non-cached data on disk

● Simplifies memory
management

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Uniform Memory Access (UMA)
● All memory is

equidistant from all
the cores
o Equal access times

to memory units
● Also known as CC-

UMA
o Cache Coherent

UMA
● Disadvantage?

o Hard to scale with
increasing number
of cores

5

Caches
Core

Caches Caches
Core

Caches Caches
Core

Caches

On chip memory controller

DRAM DRAM DRAM

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Virtual to Physical Mapping in UMA

6

Caches
Core

Caches Caches
Core

Caches Caches
Core

Caches

On chip memory controller

PB virtual
address
space

DRAM DRAM DRAM ● As memory is
equidistant, same
latency to access
each physical
pages of PB’s
virtual address
space
o Equal number of

hops

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Non Uniform Memory Access (NUMA)
● Generally made by physically

linking two or more multicore
processors (i.e., socket) on the
same motherboard
o Single processor can also have a

NUMA architecture (e.g., AMD EPYC
processors)

● One socket can directly access
memory of another socket
o Both DRAM and caches (e.g., LLC)

● Cache coherent NUMA
architecture called as CC-NUMA
o Cache Coherent NUMA

● Cache coherent interconnect (e.g.,
QPI on Intel processors) used for
low latency and high bandwidth
memory accesses across the
NUMA domains

7

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Virtual to Physical Mapping in NUMA

8

● Each NUMA domain has its own
physical pool of memory

● Local memory offers higher
bandwidth and lower latency than
remote memory

● Even if it’s a cc-NUMA system
where memory is addressed with a
global address space, accessing
different parts of memory can
result in different latency and
bandwidth
o Imagine LLC on socket-1 is sharing a

cache line residing on the LLC of
socket-2

● High performance can only be
achieved by placing the
computation and its data inside the
same NUMA domain
o What about the energy usage?

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Getting CPU & NUMA Information on Linux

9

Logical core IDs

NUMA node
memory

Node distance
measures the
relative cost to

access the
memory of

another NUMA-
node. A NUMA-
node has always
a distance 10 to

itself (lowest
possible value)

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Recursive Array Sum on NUMA Processor
● Async would be executing on cores of both

the sockets
● Overheads?

o Remote DRAM accesses
o Cache lines shared across caches on both

socket. Can we fix it?
§ Easily resolvable by setting THRESHOLD as

multiple of cache line size (64Bytes on x86)

● Physical page allocations
o Only on socket-1

§ Local DRAM accesses at socket-1, but
remote DRAM accesses at socket-2

o Only on socket-2
§ Local DRAM accesses at socket-2, but

remote DRAM accesses at socket-2
o Shared between socket-1 and socket-2

§ Random work-stealing will lead to remote
DRAM accesses

10

int array_sum(int low, int high) {
if(high – low > THRESHOLD) {

int mid = (low + high)/2;
future<int> left = async([=]() { return array_sum(low, mid); });
right = array_sum(mid, high);
return left.get() + right;

} else {
int sum = 0;
for(int i=low; i<high; i++) {

sum += array[i];
}
return sum;

}
}

Why we are not
using Fib as an
example here?

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Recursive Array Sum on NUMA Processor
● Async would be executing on cores of both

the sockets
● Overheads?

o Remote DRAM accesses
o Cache lines shared across caches on both

socket
§ Easily resolvable by setting THRESHOLD as

multiple of cache line size (64Bytes on x86)

● Physical page allocations
o Only on socket-1

§ Local DRAM accesses at socket-1, but
remote DRAM accesses at socket-2

o Only on socket-2
§ Local DRAM accesses at socket-2, but

remote DRAM accesses at socket-2
o Shared between socket-1 and socket-2

§ Random work-stealing will lead to remote
DRAM accesses

● High performance only if
o Physical pages for left half of the array on

socket-1’s DRAM and left subtree executes on
socket-1

o Physical pages for right half of the array on
socket-2’s DRAM and right subtree executes on
socket-2

11

int array_sum(int low, int high) {
if(high – low > THRESHOLD) {

int mid = (low + high)/2;
future<int> left = async([=]() { return array_sum(low, mid); });
right = array_sum(mid, high);
return left.get() + right;

} else {
int sum = 0;
for(int i=low; i<high; i++) {

sum += array[i];
}
return sum;

}
}

Two issues to resolve:
a) Ensuring pages allocations at right place
b) Partitioning computation at each socket

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Today’s Lecture
● Non uniform memory accesses
● Page allocation policies
● NUMA aware parallel runtime

12

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Page Allocation Policy on Linux

13

On chip memory
controller

Core 1 Core 2

DRAM

On chip memory
controller

Core 3 Core 4

DRAM

QPI

int * array = new int[2048]; // Two pages

Fast Slow

● First Touch Policy
o Calling malloc/new doesn’t allocate the

physical pages on a NUMA node

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Page Allocation Policy on Linux

14

On chip memory
controller

Core 1 Core 2

DRAM

On chip memory
controller

Core 3 Core 4

DRAM

QPI

int * array = new int[2048]; // Two pages
for(int i=0; i<size; i++) {

array[i] = 0;
}

Fast Slow

● First Touch Policy
o Calling malloc/new doesn’t allocate the

physical pages on a NUMA node
§ It is allocated only when those addresses are

first “touched”
§ The physical page is allocated during page-

fault handling
• A hardware fault will be generated when a

process touches an address (page fault) that
has not been used yet

o Allocates the physical page in the memory
closest to the thread/process accessing this
page for the first time
§ Default policy on Linux

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Page Allocation Policy on Linux

15

On chip memory
controller

Core 1 Core 2

DRAM

On chip memory
controller

Core 3 Core 4

DRAM

QPI

int * array = new int[2048]; // Two pages
int mid = 2048/2;
std::thread T1([=]() {

for(int i=0; i<1024; i++) {
array[i] = 0;

}
});
std::thread T1([=]() {

for(int i=1024; i<2048; i++) {
array[i] = 0;

}
});

Fast Slow

● First Touch Policy
o Where both the pages will be allotted in the

shown program?
§ Not guaranteed, may even be on a single

socket if both the threads are going to run on
a single socket

How to ensure each
thread runs on

different socket?

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Page Allocation Policy on Linux

16

On chip memory
controller

Core 1 Core 2

DRAM

On chip memory
controller

Core 3 Core 4

DRAM

QPI

int * array = new int[2048]; // Two pages
int mid = 2048/2;
std::thread T1([=]() { //set affinity(C1)

for(int i=0; i<1024; i++) {
array[i] = 0;

}
});
std::thread T1([=]() {//set affinity(C3)

for(int i=1024; i<2048; i++) {
array[i] = 0;

}
});

Fast Slow

● First Touch Policy
o Where both the pages will be allotted in the

shown program?
§ Not guaranteed, may even be on a single

socket if both the threads are going to run on
a single socket
• To ensure they are allotted on different

sockets, they must be mapped to two different
sockets
• Set the CPU affinity of a thread using

sched_setaffinity before letting them “touch”
the memory

• Even if there are only two threads, and two
dual core sockets, why should we still set their
affinities on two different sockets?
• Lesser contention over on-chip memory

controller

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Page Allocation Policy on Linux

17

On chip memory
controller

Core 1 Core 2

DRAM

On chip memory
controller

Core 3 Core 4

DRAM

QPI

int * array = new int[2048]; // Two pages
int mid = 2048/2;
std::thread T1([=]() { //set affinity(C1)

for(int i=0; i<1024; i++) {
array[i] = 0;

}
});
std::thread T1([=]() {//set affinity(C3)

for(int i=1024; i<2048; i++) {
array[i] = 0;

}
});

Fast Slow

● First Touch Policy
o Where both the pages will be allotted in the

shown program?
§ Not guaranteed, may even be on a single

socket if both the threads are going to run on
a single socket
• To ensure they are allotted on different

sockets, they must be mapped to two different
sockets
• Set the CPU affinity of a thread using

sched_setaffinity before letting them “touch”
the memory

• Even if there are only two threads, and two
dual core sockets, why should we still set their
affinities on two different sockets?
• Lesser contention over on-chip memory

controller

Can we improve
the performance?

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Page Allocation Policy on Linux

18

On chip memory
controller

Core 1 Core 2

DRAM

On chip memory
controller

Core 3 Core 4

DRAM

QPI

posix_memalign(&array, ...); // Two pages

std::thread T1([=]() { //set affinity(C1)
array[0] = 0; //array is int type

});
std::thread T1([=]() {//set affinity(C3)

array[1024] = 0;
});

Fast Slow

● First Touch Policy
o Another way to achieve the same result, but

with only a few CPU cycles
§ Using posix_memaling

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Alternative Allocation Policies
● numactl

o Linux tool to control
NUMA policy for
launching
processes or
allocating shared
memory

o Controls the policy
for the entire
program, but not to
individual memory
areas

● Libnuma
o Shared library that

can be linked to
programs and
offers several
policies for NUMA
allocations that
could be used
differently for
different memory
areas

19

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Few Routines from libnuma
o numa_max_node()

§ How many nodes are there?
o numa_alloc_onnode()

§ Alloc memory on a particular node
o numa_alloc_local()

§ Alloc memory on the current “local” node
o numa_alloc_interleaved()

§ Places memory pages across all the available NUMA nodes in round robin
o numa_free()

§ Free the memory
o numa_run_on_node()

§ Run thread and it’s children on this node
o numa_node_of_cpu()

§ My current NUMA node

20

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Frequently used Page Allocation Policies
● Allocating an integer array of size 8192

o Assuming page aligned memory allocation, total pages are 8 (4KB each)
§ Assume physical page ids P1-P8

o Total 4 NUMA nodes
§ N1-N3

● Block cyclic
o Block size is ratio of total pages and number of NUMA nodes

● Interleaved

21

N1 N2 N3 N4

P1-P2 P3-P4 P5-P6 P1-P8

N1 N2 N3 N4

P1 P2 P3 P4
P5 P6 P7 P8

Question: which of these two policies
you would choose, if you have to run

recursive task parallel implementation
of vector addition using the traditional

random work-stealing runtime?

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Today’s Lecture
● Non uniform memory accesses
● Page allocation policies
● NUMA aware parallel runtime

22

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

NUMA Aware Parallel Runtime: Naïve Approach

23

On chip memory
controller

Core 1 Core 2

DRAM

On chip memory
controller

Core 3 Core 4

DRAM

QPI

W1 W2 W3 W4

Recursive task
parallel vector

addition

Question: What should
be our first concern,

and how to resolve it?

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

NUMA Aware Parallel Runtime: Naïve Approach

24

On chip memory
controller

Core 1 Core 2

DRAM

On chip memory
controller

Core 3 Core 4

DRAM

QPI

P1

P2

P3

P4

P1 P2 P3 P4

W1 W2 W3 W4

● Spread the memory evenly across all the
NUMA nodes
o Reduce bottleneck at individual node’s memory

controller
o Improving locality

Question: How to
improve locality in

random work-stealing?

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

NUMA Aware Parallel Runtime: Naïve Approach

25

On chip memory
controller

Core 1 Core 2

DRAM

On chip memory
controller

Core 3 Core 4

DRAM

QPI

P1

P2

P3

P4

P1 P2 P3 P4

W1 W2 W3 W4

● Spread the memory evenly across all the
NUMA nodes
o Reduce bottleneck at individual node’s memory

controller
o Improving locality

● Create teams of worker threads at each
NUMA node where they can steal tasks
from their local team members

Question: How to start
the execution?

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

NUMA Aware Parallel Runtime: Naïve Approach

26

On chip memory
controller

Core 1 Core 2

DRAM

On chip memory
controller

Core 3 Core 4

DRAM

QPI

P1

P2

P3

P4

P1 P2 P3 P4

P1 P2 P3 P4

W1 W2 W3 W4

● Spread the memory evenly across all the
NUMA nodes
o Reduce bottleneck at individual node’s memory

controller
o Improving locality

● Create teams of worker threads at each
NUMA node where they can steal tasks
from their local team members

● Give each team a seed task as per the
locality of the data associated with that task

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

NUMA Aware Parallel Runtime: Naïve Approach
● Spread the memory evenly across all the

NUMA nodes
o Reduce bottleneck at individual node’s memory

controller
o Improving locality

● Create teams of worker threads at each
NUMA node where they can steal tasks
from their local team members

● Give each team a seed task as per the
locality of the data associated with that task

● Dealing with load imbalance (if any)?
o Allow stealing from a remote team
o Migrate the memory pages associated with that

task from remote node to local node
§ numa_move_pages() in libnuma

27

On chip memory
controller

Core 1 Core 2

DRAM

On chip memory
controller

Core 3 Core 4

DRAM

QPI

P1

P2

P3

W1 W2 W3 W4

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

NUMA Aware Parallel Runtime: Naïve Approach
● Spread the memory evenly across all the

NUMA nodes
o Reduce bottleneck at individual node’s memory

controller
o Improving locality

● Create teams of worker threads at each
NUMA node where they can steal tasks
from their local team members

● Give each team a seed task as per the
locality of the data associated with that task

● Dealing with load imbalance (if any)?
o Allow stealing from a remote team
o Migrate the memory pages associated with that

task from remote node to local node
§ numa_move_pages() in libnuma

● What if its not so easy to map seed tasks?
o We will see in next lecture

28

On chip memory
controller

Core 1 Core 2

DRAM

On chip memory
controller

Core 3 Core 4

DRAM

QPI

P1

P2

P3

W1 W2 W3 W4

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Reading Materials
● NUMA APIs for Linux

o http://developer.amd.com/wordpress/media/2012/10/LibNUMA-
WP-fv1.pdf

● Page migration
o https://www.kernel.org/doc/html/v5.4/vm/page_migration.html
o https://www.intel.com/content/www/us/en/developer/articles/techni

cal/measuring-impact-of-numa-migrations-on-
performance.html#gs.cqn3e4

29

http://developer.amd.com/wordpress/media/2012/10/LibNUMA-WP-fv1.pdf
https://www.kernel.org/doc/html/v5.4/vm/page_migration.html
https://www.intel.com/content/www/us/en/developer/articles/technical/measuring-impact-of-numa-migrations-on-performance.html

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 11: Non Uniform Memory Access Architecture

Next Lecture (L #12)
● Recursive task parallelism on NUMA architecture

30

