Lecture 12: Recursive Task
Parallelism on NUMA

Architecture

Vivek Kumar
Computer Science and Engineering
IIIT Delhi
vivekk@iiitd.ac.in

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

ot Somesem e s
Today’s Lecture

® NUMA aware work-stealing in boost::fibers
® Assigning NUMA affinity to async tasks

D

Lecture 12: Recursive Task Parallelism on NUMA Architecture

NUMA Aware Work-Stealing in boost::fibers

int main() {
// Step-1: Gather NUMA topology

std::vector<boost::fibers::numa::node> topo = boost::fibers::numa::topology();
// Step-2: Main thread is on Core-0, and rest of the threads pinned to other cores

auto start_cpulID = *node.logical cpus.begin();
std::threads* threads = new std::threads[NUM_CORES];
int wid=0;
for(auto & node : topo) {
for(std::uint32_t cpuID node.logical cpus) {
if(start_cpulD != cpuID) { // Exclude master thread

threads[wid]=std: :thread(worker_routine, cpulD, node.id, std::cref(topo));

}
wid++;
}

}
// Step-3: Set scheduling policy at fiber manager

boost::fibers::use_scheduling algorithm

<boost::fibers::numa::algo::work stealing>(start_cpulD, node.id, topo);
// Rest of the steps same as in default work-stealing (Lecture 05, Slide #7)

4

More info: https://www.boost.org/doc/libs/1_80_O0/libs/fiber/doc/html/fiber/numa.html

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Main thread

O

Gathers the
NUMA
topology

Pins to core-
0

Create
worker
threads on
rest of the
cores

Set NUMA
aware work-
stealing

policy

Lecture 12: Recursive Task Parallelism on NUMA Architecture

NUMA Aware Work-Stealing in boost::fibers

® \Vorker
threads

void worker_ routine(uint32_ t cpulD, uint32 t nodelD, I::)ir.IS tC)
std: :reference_wrapper<const std::vector<boost::fibers::numa::node>> const &topo) { O
// Step-1: Set scheduling policy at fiber manager rest Of
boost::fibers::use_scheduling algorithm
<boost::fibers::numa::algo::work_stealing>(cpulD, nodeID, topo); the cores
// Rest of the steps same as in default work-stealing (Lecture 05, Slide #8)

} o Set
aware
work-
stealing

policy

More info: https://www.boost.org/doc/libs/1_80_O0/libs/fiber/doc/html/fiber/numa.html
E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 4

Lecture 12: Recursive Task Parallelism on NUMA Architecture

NUMA Aware Work-Stealing in boost::fibers

® Stealing algorithm

o If the local queue of one thread
runs out of ready fibers, the
thread tries to steal a ready
fiber from another thread
ruraning within the same NUMA.-
node

= Local memory accesses

DRAM DRAM

On chip memory On chip memory
controller controller

QP o If local steals failed, the thread
— tries to steal fibers from other
= A= ~ = NUMA-nodes
P;iielgecr;e ; Vs W2 w3 S w4 = Remote memory accesses
stealing > ® Any drawbacks?
< o Does not do anything special

Remote stealing only
if local steal failed

about NUMA memory allocation
o Task and its data could be on
two different NUMA domains

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

NUMA Aware Work-Stealing in boost::fibers

® FEvaluation of a recursive task
parallel array sum

B
>

4.38

4.36

4.34

Execution time (seconds)

4.32

Only 1%

improvement

W Default m NUMA

©)

Integer array of total size 1GB

» Interleaved page allocation on
NUMA nodes

Launches detached fiber for the first

recursive call, and executes the

second recursive call sequentially

» Task creation stops if chunk is <=
page size (4KB)

AMD EPYC 7551 32-Core processor

with hyperthreading enabled

» Four NUMA domains, each having
16 logical cores

1D

o ewemeusieTakPeldnonNOAANeowe
NUMA Hierarchy of Modern Processors

NUMA hierarchy
) Logical Root

32 Core AMD EPYC Processor

D

Lecture 12: Recursive Task Parallelism on NUMA Architecture

Hierarchical Work-Stealing: How?

® How to improve the
Iocah:c&/ on modern
NUMA processors?

PO’ Logical Root o Give high preference for
Step-3 local stealmg

- = Workers sharing a

AR common L3 can first
P1 » 0 2 P3 P4

.~ > attempt steal among
‘ ' ‘ ‘ ' ‘ ‘ ‘ themselves
= Try stealing from the
W-[0-3] W-[4-7] W-[8-11] W-[12-15] W-[16-19] W-[20-23] W-[24-27] W-[28-31] Slglln ?under same
R DRAM |f a worker
N, failed to steal from

i victims sharing L3 with
Step-1 Step-2 the thief

o ITry remote $teallnlg only
if local stealing failed

[E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

Hierarchical Work-Stealing: Issues?

1. Performance

o Random v/s round robin work-
stealing?

o Who could perform remote
PO Logical Root steals?

Step-3 o How to ensure the locality of
tep- memory pages?

“~ XN . Page migrations could be
/ erformed, but it can lead to
P1 » + P2 P3 P4 8verheads

P5 pe b7 =3 : @ @ @ @@ 2 Productivity

W-[0-3] W-[4-7] W-[8-11] W-[12-15] W-[16-19] W-[20-23] W-[24-27] W-[28-31] o Any possibility to improve the
_ locality/performance of an_%/ type
AR of recursive application without
N, hurting programmer’s
S productivity?
. As of now we are considering
Step-1 Step-2 that the programmer creates
the seed task at each NUMA
domain

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 9

Lecture 12: Recursive Task Parallelism on NUMA Architecture

Performance: Random VS. Round Victim Selection

® Random victim selection
o It ensures quick distribution of work even in highly imbalanced cases

o May not be optimal in hierarchical work-stealing as remote steals happens
only after failed steal attempt from each and every local victims

= Can cause starvation by delayin?_the remote steals when random victim selection
returns the same local victim multiple times

® Using a mix of random & round-robin victim selection during
hierarchical stealing
o Local steal: round robin victim selection inside the local NUMA domain
o Remote steal: thief chooses a victim from a remote NUMA node based on the
distance of the NUMA node

= Round robin victim selection from a nearby node first, and then from farther node if
the steal from nearby node failed

» |f same distance between all NUMA nodes, then first randomly select a NUMA
node, and then use round-robin victim selection inside that NUMA node

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 10

Lecture 12: Recursive Task Parallelism on NUMA Architecture

Performance: Who Could Perform Remote Steals

® Leader based approach

o Aleader could be chosen within each NUMA domain who should
be requested for carrying out remote steals

= Work best in case of a distributed work-stealing (over a cluster) to
reduce network congestion

® Free to steal approach

o Any worker can perform remote steals if it has failed locally
= Works fine in shared memory based work-stealing

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 11

Lecture 12: Recursive Task Parallelism on NUMA Architecture

Productivity & Performance: Recursive Programs

1. int *A;
2. void Sort(int low, int high) {

3. if(Chigh-1ow)<LIMIT) return SeqSort(low, high);
4. 1int Chunks=(Chigh-low)/4;

5. finish {

6. async Sort(/*Chunk C1*/); Sort

7 async Sort(/*Chunk C2*/); Sort

8 async Sort(/*Chunk C3*/); S

9. async Sort(/*Chunk C4*/);

10. }
11. finish {

12 async Merge(/*Chunk C1*/, /*Chunk C2*/);

Merge
13. async Merge(/*Chunk C3*/, /*Chunk C4*/);

Merge
14. 3}
15. Merge(/*Chunk C12*/, /*Chunk C34*/); @
16.}

Merge

® Parallel merge sort program generating four recursive
tasks for call to sort, and two recursive tasks for merging

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 12

Lecture 12: Recursive Task Parallelism on NUMA Architecture

Productivity & Performance: Recursive Programs

1. int *A;

2. void Sort(int low, int high) {

3. if((high-1ow)<LIMIT) return SeqSort(low, high); X

4. 1int Chunks=(Chigh-low)/4;

5. finish { Sort Sort Sort Sort

6. async Sort(/*Chunk C1*/);

7 async Sort(/*Chunk C2*/);

8. async Sort(/*Chunk C3*/); >

9. async Sort(/*Chunk C4*/);

10. }

11. finish { Irregular execution
Merge Merge

12 async Merge(/*Chunk C1*/, /*Chunk C2*/); DAG

13. async Merge(/*Chunk C3*/, /*Chunk C4*/);

14. }

15. Merge(/*Chunk C12*/, /*Chunk C34*/);

16} Merge

® This program generates an irregular execution DAG as
total number of children at each fork point isn’t the same

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 13

o eweizReusieTaskPanlelmon NUMAAThiectre
Productivity & Performance: Recursive Programs

L. “inkt *A3
2. void Sort(int low, int high) {

3 1f((high-1ow)<LIMIT) return SeqSort(low, high); How to initiate the

4. int Chunks=Chigh-low)/4; .

5. finish { ; computation for
6. async Sort(/*Chunk C1*/); good performance?
7. async Sort(/*Chunk C2*/);

8. async Sort(/*Chunk C3*/);

9. async Sort(/*Chunk C4*/);

10. }

11. finish {

PO Logical Root

12 async Merge(/*Chunk C1*/, /*Chunk C2*/);
13. async Merge(/*Chunk C3*/, /*Chunk C4*/);

14. 3}
15. Merge(/*Chunk C12*/, /*Chunk C34*/); -
16.}

W-[0-3] W-[4-7] W-[8-11] W-[12-15] W-[16-19] W-[20-23] W-[24-27] W-[28-31]

® To improve the performance, each node should get an equal size
computation (seed task) to begin with

o Four seed tasks at top-level for recursive call to sort (Level-1)
o Two seed tasks at top-level for recursive call to merge (Level-2)

1P

o eweizReusieTaskPanlelmon NUMAAThiectre
Productivity & Performance: Recursive Programs

: -
1. int *A;
2. void Sort(int low, int high) {

o
3. 1if((high-1ow)<LIMIT) return SeqSort(low, high);
4. 1int Chunks=Chigh-low)/4;
5. finish {
6. async Sort(/*Chunk C1*/); R TRIEYE $ $
7. async Sort(/*Chunk C2*/); é ‘ é ‘ o & o ‘
8. async Sort(/*Chunk C3*/); ST T
9. async Sor’t(/*Chunk C4*/); | T | | T | | T | | T |
i? iinish { Node-0 Node-1 Node-2 Node-3

PO Logical Root

12. async Merge(/*Chunk C1*/, /*Chunk C2*/);
13. async Merge(/*Chunk C3*/, /*Chunk C4*/);

14. 3 ~@rAVD-
15. Merge(/*Chunk C12*/, /*Chunk C34*/); -
16.}

W-[0-3] W-[4-7] W-[8-11] W-[12-15] W-[16-19] W-[20-23] W-[24-27] W-[28-31]
Seed task at level-1 generates equal load on all four NUMA nodes as all four NUMA node receives a seed task

Unequal load in level-2 as only two top-level tasks are available for four NUMA nodes

o Load imbalance as nodes without a seed task would starve, and would directly start stealing from remote NUMA nodes

o Bad locality as task and its data may not be on the same NUMA node as tasks are being migrated across the nodes during the merge
phase (Level-2)

Low productivity as the programmer has to create the seed tasks for each NUMA node at each levels (only once at the start

e izRewsweTakPaslelmonNUMANTIeGue
Productivity & Performance: Recursive Programs

1. int *A;
1. int *A; 2. void Sort(int low, int high) {
2. void Sor‘t(int 1OW, int high) { 1f((high-1ow)<LIMIT) return SeqSort(low, high);

w

3. 1f((high-1ow)<LIMIT) return SeqSort(low, high); [51. }:ﬁii:u?ksz(highwlow)m
4 int Chunks=Chigh-low)/4; 6. async_hinted (A, Cl_start, Cl_end) Sort(/*Chunk C1*/);
5. finish { 7 async_hinted (A, C2_start, C2_end) Sort(/*Chunk C2*/);

. 8. async_hinted (A, C3_start, C3_end) Sort(/*Chunk C3*/);
6. async Sort(/*Chunk Cl*/)’ 9. async_hinted (A, C4_start, C4_end) Sort(/*Chunk C4*/);
7 async Sort(/*Chunk C2*/); 10. 3}
8 T oorkG e) — i; e {h' ted (A, Cl_start, C2_end) Merge(/*Chunk C1*/, /*Chunk C2*/)

. 8 async_hinte 5 Clustart; CZ-en erge(/*Chun */-5 J/XChun D
9. async Sort(/*Chunk C4*/); 13. async_hinted (A, C3_start, C4_end) Merge(/*Chunk C3*/, /*Chunk C4*/);
10. } 4. 1
11. finish { 15. Merge(/*Chunk C12*/, /*Chunk C34*/);

16.}
12 async Merge(/*Chunk C1*/, /*Chunk C2*/); | 17 void kernel()
13. async Merge(/*Chunk C3*/, /*Chunk C4*/); 18. A = numa_alloc_blockcyclic<int>(N);
14 . } 19. initialize(Q);
. 20. Sort(0, N);
L Mer‘ge(/*Chunk. C.12*/, /*Chunk C34*/); 21, TELFREECE) async_hinted-finish for NUMA
16.} async-finish for UMA 22.} —
[Programmer allocates the array in block cyclic manner over all NUMA nodes (block size = array_size/num_numa_nodes)
[Programmer assign data-affinity hints to each async tasks
o No program modification based on NUMA architecture
. Same program can run on any number of NUMA nodes as the parallel runtime will dynamically create tasks on a node that contains the range

of memory addresses on which that task is going to operate
o High productivity
. Except for two NUMA memory allocation/deallocation APls

1P

® Let us try to understand the implementation of the
async_hinted using a simple parallel recursive array sum
having that generates two tasks in each recursion

o Note that it is mandatory to use async_hinted for each parallel
tasks, i.e., for both left and right chunk

1P

Lecture 12: Recursive Task Parallelism on NUMA Architecture

Productivity & Performance: Recursive Programs

int array_sum(int low, int high) {
if(high - low > 512) {
int mid = (low + high)/2;
future<int> left = async_hinted(array, low, mid, [=]() {
return array_sum(low, mid);
3
future<int> right = async_hinted(array, mid, high, [=]() {
return array_sum(mid, high);
1)
return left.get() + right.get();
} else {
int sum = 9;
for(int i=low; i<high; i++) {
sum += array[i];
¥
return sum;
}
}

int main() {
int* array = numa_alloc_blocksize(4096); // 4 memory pages
array_sum(@, 4096);

} 4
® Recursive array sum

o Each recursion must be an async_hinted
task

o Task must supply the starting address of
the array being accessed and the range of
array access

[E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 18

o eweizReusieTaskPanlelmon NUMAAThiectre
Productivity & Performance: Recursive Programs

int array_sum(int low, int high) {
if(high - low > 512) {

int mid = (low + high)/2;

future<int> left = async_hinted(array, low, mid, [=]() {
return array_sum(low, mid);

1

future<int> right = async_hinted(array, mid, high, [=]() {

return array_sum(mid, high);

1
return left.get() + right.get();
} else {
int sum = 0;
for(int i=low; i<high; i++) {
sum += array[i];
}
return sum;
}
}

int main() {
int* array = numa_alloc_blocksize(4096); // 4 memory pages
array_sum(@, 4096);

} 4

Hierarchical place tree (HPT)

o A tree data structure where each node (called as place)
represents a level in the NUMA memory hierarchy
o Each node has “N” number of deques, where “N” is total size of
thread pool
] Allows each worker to push/pop task at any place in the HPT

without asynchronously

PO Logical Root

D

W-[0-3] W-[4-7] W-[8-11] W-[12-15] W-[16-19] W-[20-23] W-[24-27] W-[28-31]

Adequeforeachl | | | | | | |
worker at each place

1P

Productivity & Performance: Recursive Programs

int array_sum(int low, int high) {
if(high - low > 512) {

int mid = (low + high)/2;

future<int> left = async_hinted(array, low, mid, [=]() {
return array_sum(low, mid);

1

future<int> right = async_hinted(array, mid, high, [=]() {

return array_sum(mid, high);

1
return left.get() + right.get();
} else {
int sum = 0;
for(int i=low; i<high; i++) {
sum += array[i];
} Block cyclic allocation of 4

memory pages on 4 NUMA nodes

return sum;
}
}

int main() {
int* array = numa_alloc_blocksize(4096); // 4 memory pages

array_sum(@, 4096); PO Logical Root

}
® Block cyclic allocation will ensure equal number
(conti lYOUS) of physical pages allogated under :

each NUMA domain

o Places P1 and other places in its subtree (I\F/’I5 & P6) w031 w-[4-7] W[B-11] W-[12-15] W-[16-19] W-[20-23] W-[24-27] W-[28-31]
will have affinity to memory residing at NUMA node
represented by P1 A deque for each| | | | | | I I

. Likewise for places P2, P3, and P4 worker at each place

1P

Lecture 12: Recursive Task Parallelism on NUMA Architecture

Productivity & Performance: Recursive Programs

int array_sum(int low, int high) {

if(high - low > 512) { .

int mid = (low + high)/2; T-1: [0, 2048]

future<int> left = async_hinted(array, low, mid, [=]() {
return array_sum(low, mid);

1; T-3:

T-2: [2048, 4096]

future<int> right = async_hinted(array, mid, high, [=]() { T'6:
return array_sum(mid, high); [O, 1024] 072 4096]
s y
return left.get() + right.get();
} else {

int sum = 9;
for(int i=low; i<high; i++) {
sum += array[i];

}

y T-7: T-8: T-0: T-10:
) [0, 512] [512,1024] [1024,1536] [1536,2048]
int main() {

int* array = numa_alloc_blocksize(4096); // 4 memory pages
array_sum(@, 4096);

® Any worker executing an async_hinted has to @ @ @ @

d%/namicall decide the place inthe HPT where it
S

ould push this task (affinity of task) s ke “®i‘ P pn

W-[0-3] W-[4-7] W-[8-11] W-[12-15] W-[16-19] W-[20-23] W-[24-27] W-[28-31]

PO Logical Root

® It calculates the palce affinity of a task using the
range of memory being accessed inside this task A deque for each

worker at each place

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 21

Lecture 12: Recursive Task Parallelism on NUMA Architecture

Productivity & Performance: Recursive Programs

int array_sum(int low, int high) {
if(high - low > 512) {
int mid = (low + high)/2;
future<int> left = async_hinted(array, low, mid, [=]() {
return array_sum(low, mid);
1
future<int> right = async_hinted(array, mid, high, [=]() {
return array_sum(mid, high);
1)
return left.get() + right.get();
} else {
int sum = 9;
for(int i=low; i<high; i++) {
sum += array[i];

T-1: [0, 2048] T-2: [2048, 4096]

T-3:
[0, 1024]

}

return sum;

}
¥

T-7: T-8: T-9: ;
[0, 512] [512,1024] [1024,1536] [1536,2048]

int main() {
int* array = numa_alloc_blocksize(4096); // 4 memory pages
array_sum(@, 4096);

I pPo Logical Root

e
T N~

® Any task whose memory access B " ‘ @ 3

span across multiple NUMA ® © 0 0 © ® o
domains (P1, P2, P3, and P4 , W-0-3] W-4-7] WHB-11] WA{12-15] W-[16-19] W-[20-23] W-{24-27] W-[28-31]
should be pushed at Place P A deque for each

worker at each place

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 22

Productivity & Performance: Recursive Programs

int array_sum(int low, int high) {
if(high - low > 512) {

int mid = (low + high)/2; T-1: [0, 2048]

future<int> left = async_hinted(array, low, mid, [=]() {
return array_sum(low, mid);

D T-3:
future<int> right = async_hinted(array, mid, high, [=]() {
return ar'r'ay_su,m(mid,, high,); [0, 1024]

1
return left.get() + right.get();

} else {
int sum = @; If created by

for(int i=low; i<high; i++) { any worker

) sum += array[i]; NOT under P3

X return sum; T-7: T-8: T-9: :
} If created by [0, 512] [512,1024] [1024,1536] [1536,2048]

any worker -

int main() { NOT under P2
int* array = numa_alloc_blocksize(4096); // 4 memory pages

array_sum(@, 4096);
} /4
® |If a worker executes an async_hinted that
access memo ran?e having affinity with a
remote Iace en it should push that task at
the DR p|aCe of that remote NUMA node w03 w471 W-8-11] W-[12-15] W-[16-19] W-[20-23] W-[24-27] W-[28-31]

o If WO create task T5, it would push it at place P3 a deque for each ||| {1111
o If W31 creates task T10, it would push it place P2 worker at each place

T-2: [2048, 4096]

PO Logical Root

1D

Productivity & Performance: Recursive Programs

int array_sum(int low, int high) {

if(high - low > 512) { .

int mid = (low + high)/2; T-1: [0, 2048]

future<int> left = async_hinted(array, low, mid, [=]() {
return array_sum(low, mid);

T-2: [2048, 4096]

¥ If created by T-3:

future<int> right = async_hinted(array, mid, high, [=]() { -r'ES:
return array_sum(mid, high); any worker [0, 1024] 072 4096]
s under P5 !
return left.get() + right.get();

} else {
int sum = @;
for(int i=low; i<high; i++) {

sum += array[i];

}
return sum;

}

}

T-7: T-8: T-9: T-10:
[0, 512] [512,1024] [1024,1536] [1536,2048]

int main() {
int* array = numa_alloc_blocksize(4096); // 4 memory pages
array_sum(@, 4096);

} 4
® Any worker creating an async_hinted with a

affinity to its local DRAM place, then it will
push this task ONLY into its deque at its

PO Logical Root

cache place W-[0-3] W-[4-7] W-[8-11] W-[12-15] W-[16-19] W-[20-23] W-[24-27] W-[28-31]
o If WO create tasks T3, T7, and T8, it will only push a deque for each ||| {1111
them to its cache place P5 worker at each place

1D

o eweizReusieTaskPanlelmon NUMAAThiectre
Productivity & Performance: Recursive Programs

int array_sum(int low, int high) {
if(high - low > 512) {
int mid = (low + high)/2;
future<int> left = async_hinted(array, low, mid, [=]() {
return array_sum(low, mid);
1

future<int> right = async_hinted(array, mid, high, [=]() { Round robin steals
return array_sum(mid, high);

1
return left.get() + right.get();

} else { A deque for each
int sum = @; Steal path ’ worker at each place
for(int i=low; i<high; i++) { _————— /

sum += array[i];
¥
return sum;
} s~)
} I :..--;

\

TWA0-3] We[4-7] W-B-11] W-[12-15] W-[16-19] W-[20-23] W-[24-27] W-[28-31]

int main() {
int* array = numa_alloc_blocksize(4096); // 4 memory pages
array_sum(@, 4096);

} /4
® Any worker can pop only from its leaf place (cache)

0 Recall, there will not be any tasks in its own deque at parent DRAM place as only remote workers can
push task at its DRAM place

® Hierarchical steals within a NUMA domain and then from logical root

0 WO at place P5 steal from all deques at places P5, P1, P6, and PO, respectively until successful
" Strict locality without worker starvation

1P

Gt
Reading Materials

® Hierarchical work-stealing
o https://hal.inria.fr/inria-00429624v2/document

® async_hinted on NUMA architectures
o https://vivkumar.github.io/papers/hipc2020.pdf

1P

https://hal.inria.fr/inria-00429624v2/document
https://vivkumar.github.io/papers/hipc2020.pdf

ottt
Next Lecture on 12/10 (L #13)

® No lectures on 01/10 (tomorrow) and 07/10
® Trace and replay of task parallel programs

® Quiz-2
o Syllabus: Lectures 06-12

D

