
CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task 
Parallelism on NUMA 

Architecture
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

Today’s Lecture
● NUMA aware work-stealing in boost::fibers
● Assigning NUMA affinity to async tasks

2



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

NUMA Aware Work-Stealing in boost::fibers
● Main thread

o Gathers the 
NUMA 
topology

o Pins to core-
0

o Create 
worker 
threads on 
rest of the 
cores

o Set NUMA 
aware work-
stealing 
policy

3
More info: https://www.boost.org/doc/libs/1_80_0/libs/fiber/doc/html/fiber/numa.html

int main() {
// Step-1: Gather NUMA topology
std::vector<boost::fibers::numa::node> topo = boost::fibers::numa::topology();
// Step-2: Main thread is on Core-0, and rest of the threads pinned to other cores
auto start_cpuID = *node.logical_cpus.begin();
std::threads* threads = new std::threads[NUM_CORES];
int wid=0;
for(auto & node : topo) {

for(std::uint32_t cpuID node.logical_cpus) {
if(start_cpuID != cpuID) { // Exclude master thread

threads[wid]=std::thread(worker_routine, cpuID, node.id, std::cref(topo));
}
wid++;

}
}
// Step-3: Set scheduling policy at fiber manager
boost::fibers::use_scheduling_algorithm

<boost::fibers::numa::algo::work_stealing>(start_cpuID, node.id, topo);
// Rest of the steps same as in default work-stealing (Lecture 05, Slide #7)

}



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

NUMA Aware Work-Stealing in boost::fibers
● Worker 

threads
o Pins to 

rest of 
the cores

o Set 
NUMA 
aware 
work-
stealing 
policy

4
More info: https://www.boost.org/doc/libs/1_80_0/libs/fiber/doc/html/fiber/numa.html

void worker_routine(uint32_t cpuID, uint32_t nodeID, 
std::reference_wrapper<const std::vector<boost::fibers::numa::node>> const &topo) {

// Step-1: Set scheduling policy at fiber manager
boost::fibers::use_scheduling_algorithm

<boost::fibers::numa::algo::work_stealing>(cpuID, nodeID, topo);
// Rest of the steps same as in default work-stealing (Lecture 05, Slide #8)

}



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

● Stealing algorithm
o If the local queue of one thread 

runs out of ready fibers, the 
thread tries to steal a ready 
fiber from another thread 
running within the same NUMA-
node
§ Local memory accesses

o If local steals failed, the thread 
tries to steal fibers from other 
NUMA-nodes
§ Remote memory accesses

● Any drawbacks?
o Does not do anything special 

about NUMA memory allocation
o Task and its data could be on 

two different NUMA domains

5

NUMA Aware Work-Stealing in boost::fibers

On chip memory 
controller

Core 1 Core 2

DRAM

On chip memory 
controller

Core 3 Core 4

DRAM

QPI

W1 W2 W3 W4Preference 
for local 
stealing

Remote stealing only 
if local steal failed



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

● Evaluation of a recursive task 
parallel array sum
o Integer array of total size 1GB 

§ Interleaved page allocation on 
NUMA nodes

o Launches detached fiber for the first 
recursive call, and executes the 
second recursive call sequentially
§ Task creation stops if chunk is <= 

page size (4KB)
o AMD EPYC 7551 32-Core processor 

with hyperthreading enabled
§ Four NUMA domains, each having 

16 logical cores

6

NUMA Aware Work-Stealing in boost::fibers

4.32

4.34

4.36

4.38

4.4

Default NUMA

Only 1% 
improvement

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

NUMA Hierarchy of Modern Processors

7

NUMA hierarchy



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

Hierarchical Work-Stealing: How?
● How to improve the 

locality on modern 
NUMA processors?
o Give high preference for 

local stealing
§ Workers sharing a 

common L3 can first 
attempt steal among 
themselves

§ Try stealing from the 
sibling L3 (under same 
DRAM) if a worker 
failed to steal from 
victims sharing L3 with 
the thief

o Try remote stealing only 
if local stealing failed

8

Step-1 Step-2

Step-3



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

Hierarchical Work-Stealing: Issues?
1. Performance

o Random v/s round robin work-
stealing?

o Who could perform remote 
steals?

o How to ensure the locality of 
memory pages?
§ Page migrations could be 

performed, but it can lead to 
overheads

2. Productivity
o Any possibility to improve the 

locality/performance of any type 
of recursive application without 
hurting programmer’s 
productivity?
§ As of now we are considering 

that the programmer creates 
the seed task at each NUMA 
domain

9

Step-1 Step-2

Step-3



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

Performance: Random VS. Round Victim Selection
● Random victim selection

o It ensures quick distribution of work even in highly imbalanced cases
o May not be optimal in hierarchical work-stealing as remote steals happens 

only after failed steal attempt from each and every local victims
§ Can cause starvation by delaying the remote steals when random victim selection 

returns the same local victim multiple times

● Using a mix of random & round-robin victim selection during 
hierarchical stealing
o Local steal: round robin victim selection inside the local NUMA domain
o Remote steal: thief chooses a victim from a remote NUMA node based on the 

distance of the NUMA node
§ Round robin victim selection from a nearby node first, and then from farther node if 

the steal from nearby node failed
§ If same distance between all NUMA nodes, then first randomly select a NUMA 

node, and then use round-robin victim selection inside that NUMA node

10



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

● Leader based approach
o A leader could be chosen within each NUMA domain who should 

be requested for carrying out remote steals
§ Work best in case of a distributed work-stealing (over a cluster) to 

reduce network congestion

● Free to steal approach
o Any worker can perform remote steals if it has failed locally

§ Works fine in shared memory based work-stealing

11

Performance: Who Could Perform Remote Steals



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

● Parallel merge sort program generating four recursive 
tasks for call to sort, and two recursive tasks for merging

12

Productivity & Performance: Recursive Programs

fork

Sort

Sort

Sort

Sort

join fork
Merge

Merge

join

Merge



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

● This program generates an irregular execution DAG as 
total number of children at each fork point isn’t the same

13

Productivity & Performance: Recursive Programs

Irregular execution 
DAG



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

● To improve the performance, each node should get an equal size 
computation (seed task) to begin with
o Four seed tasks at top-level for recursive call to sort (Level-1)
o Two seed tasks at top-level for recursive call to merge (Level-2)

14

Productivity & Performance: Recursive Programs

Level-1

Level-2

How to initiate the 
computation for 

good performance?



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

● Seed task at level-1 generates equal load on all four NUMA nodes as all four NUMA node receives a seed task

● Unequal load in level-2 as only two top-level tasks are available for four NUMA nodes
o Load imbalance as nodes without a seed task would starve, and would directly start stealing from remote NUMA nodes
o Bad locality as task and its data may not be on the same NUMA node as tasks are being migrated across the nodes during the merge

phase (Level-2)

● Low productivity as the programmer has to create the seed tasks for each NUMA node at each levels (only once at the start)
15

Productivity & Performance: Recursive Programs

Level-1

Level-2



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

16

Productivity & Performance: Recursive Programs

async-finish for UMA async_hinted-finish for NUMA

● Programmer allocates the array in block cyclic manner over all NUMA nodes (block size = array_size/num_numa_nodes)
● Programmer assign data-affinity hints to each async tasks 

o No program modification based on NUMA architecture
§ Same program can run on any number of NUMA nodes as the parallel runtime will dynamically create tasks on a node that contains the range 

of memory addresses on which that task is going to operate
o High productivity

§ Except for two NUMA memory allocation/deallocation APIs



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

● Let us try to understand the implementation of the 
async_hinted using a simple parallel recursive array sum 
having that generates two tasks in each recursion
o Note that it is mandatory to use async_hinted for each parallel 

tasks, i.e., for both left and right chunk

17



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

18

Productivity & Performance: Recursive Programs

● Recursive array sum 
o Each recursion must be an async_hinted

task
o Task must supply the starting address of 

the array being accessed and the range of 
array access



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

19

Productivity & Performance: Recursive Programs

A deque for each 
worker at each place

● Hierarchical place tree (HPT)
o A tree data structure where each node (called as place) 

represents a level in the NUMA memory hierarchy
o Each node has “N” number of deques, where “N” is total size of 

thread pool
§ Allows each worker to push/pop task at any place in the HPT 

without asynchronously 



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

20

Productivity & Performance: Recursive Programs

Block cyclic allocation of 4 
memory pages on 4 NUMA nodes

A deque for each 
worker at each place

● Block cyclic allocation will ensure equal number 
(contiguous) of physical pages allocated under 
each NUMA domain
o Places P1 and other places in its subtree (P5 & P6) 

will have affinity to memory residing at NUMA node 
represented by P1
§ Likewise for places P2, P3, and P4



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

21

Productivity & Performance: Recursive Programs
T-1: [0, 2048] T-2: [2048, 4096]

T-3: 
[0, 1024]

T-4: 
[1024, 2048]

T-5: 
[2048, 3072]

T-6: 
[3072, 4096]

T-7: 
[0, 512]

T-8: 
[512,1024]

T-9: 
[1024,1536]

T-10: 
[1536,2048]

A deque for each 
worker at each place

● Any worker executing an async_hinted has to 
dynamically decide the place in the HPT where it 
should push this task (affinity of task)

● It calculates the palce affinity of a task using the 
range of memory being accessed inside this task



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

22

Productivity & Performance: Recursive Programs
T-1: [0, 2048] T-2: [2048, 4096]

T-3: 
[0, 1024]

T-4: 
[1024, 2048]

T-5: 
[2048, 3072]

T-6: 
[3072, 4096]

T-7: 
[0, 512]

T-8: 
[512,1024]

T-9: 
[1024,1536]

T-10: 
[1536,2048]

A deque for each 
worker at each place

● Any task whose memory access 
span across multiple NUMA 
domains (P1, P2, P3, and P4), 
should be pushed at Place P0



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

23

Productivity & Performance: Recursive Programs
T-1: [0, 2048] T-2: [2048, 4096]

T-3: 
[0, 1024]

T-4: 
[1024, 2048]

T-5: 
[2048, 3072]

T-6: 
[3072, 4096]

T-7: 
[0, 512]

T-8: 
[512,1024]

T-9: 
[1024,1536]

T-10: 
[1536,2048]

A deque for each 
worker at each place

● If a worker executes an async_hinted that 
access memory range having affinity with a 
remote place, then it should push that task at 
the DRAM place of that remote NUMA node
o If W0 create task T5, it would push it at place P3
o If W31 creates task T10, it would push it place P2

If created by 
any worker 

NOT under P3

If created by 
any worker 

NOT under P2



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

24

Productivity & Performance: Recursive Programs
T-1: [0, 2048] T-2: [2048, 4096]

T-3: 
[0, 1024]

T-4: 
[1024, 2048]

T-5: 
[2048, 3072]

T-6: 
[3072, 4096]

T-7: 
[0, 512]

T-8: 
[512,1024]

T-9: 
[1024,1536]

T-10: 
[1536,2048]

A deque for each 
worker at each place

● Any worker creating an async_hinted with an 
affinity to its local DRAM place, then it will 
push this task ONLY into its deque at its 
cache place
o If W0 create tasks T3, T7, and T8, it will only push 

them to its cache place P5

If created by 
any worker 

under P5



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

25

Productivity & Performance: Recursive Programs

● Any worker can pop only from its leaf place (cache)
o Recall, there will not be any tasks in its own deque at parent DRAM place as only remote workers can 

push task at its DRAM place
● Hierarchical steals within a NUMA domain and then from logical root

o W0 at place P5 steal from all deques at places P5, P1, P6, and P0, respectively until successful
§ Strict locality without worker starvation

Round robin steals



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

Reading Materials
● Hierarchical work-stealing

o https://hal.inria.fr/inria-00429624v2/document
● async_hinted on NUMA architectures

o https://vivkumar.github.io/papers/hipc2020.pdf

26

https://hal.inria.fr/inria-00429624v2/document
https://vivkumar.github.io/papers/hipc2020.pdf


CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 12: Recursive Task Parallelism on NUMA Architecture

Next Lecture on 12/10 (L #13)
● No lectures on 01/10 (tomorrow) and 07/10
● Trace and replay of task parallel programs
● Quiz-2

o Syllabus: Lectures 06-12

27


