Lecture 13: Trace and Replay of
Task Parallel Programs

Vivek Kumar
Computer Science and Engineering
IIIT Delhi
vivekk@iiitd.ac.in

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

I e
Last Lecture (Reca p) T1:0,2048] @ T-2: [2048, 4096]

int array_sum(int low, int high) { If created by :
lf(high - low > 512) { any worker 7 [0 1024]
int mid = (low + high)/2; / ’
future<int> left = async_hinted(array, low, mid, [=]() { under P5
return array_sum(low, mid);

1) \ .”"mu. If created by
future<int> right = async_hinted(array, mid, high, [=]() { e any worker
return array_sum(mid, high); B NOT under P3

s

return left.get() + right.get(); 7

ot sn = 0 [0,512] [512,1924] [1024,1536] [1536,2048] =

for(int i=low; i<high; i++) {
sum += array[i];

}

return sum;

¥
}

int main() {
int* array = numa_alloc_blocksize(4096); // 4 memory pages
array_sum(@, 4096);

} 7 WA0-3] W-[4-7] W-[B-11] W-[12-15] W-[16-19] W-[20-23] W-[24-27] W-[28-31]
® Three rules to push a task for preserving locality ng:rq:teef:;:;cahll TN
1. Task whose data spans to multiple NUMA nodes must
, _?e pkUS:ed todatt root p':‘lce o the work o ® Four rules to steal a task for preserving locality
. aSK wWNnose data Is not local 10 the worker creatin e
task, then the task should be pushed at appropria?e 1. Attempt to steal from local leaf place

remote DRAM place 2. Attempt to steal from the local DRAM place
3. Worker creating a task with the local data must push it 3. Attempt to steal from sibling cache places under same DRAM
to its cache place
4. Attempt to steal from the root place

1P

et esmiRemoTmceaerogans
Today’s Class

® Trace and replay of asynchronous tasks
® Quiz-2

D

Lecture 13: Trace and Replay of Task Parallel Programs

Runtime Profiling

® Itis atechnique for understanding the behavior of the parallel runtime
/ program during the execution
o High-level details
= Total number of tasks created
Total number of tasks stolen
Total number of tasks migrated across NUMA domains
Total number of failed steals
Task execution time, etc.
o Low-level details
» Tracing the program execution (computation graph)
= Computation type (compute-bound / memory-bound)
= Power usage

Instructions retired for each task
Total CPU stalls, etc.

[E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

T
Runtime Profiling

® |t is atechnique for understanding the behavior of the parallel runtime
/ program during the execution

o High-level details
= Total number of tasks created thread local counters
Total number of tasks stolen
Total number of tasks migrated across NUMA domains
Total number of failed steals
Task execution time, etc.
o Low-level details
= Tracing the program execution (computation graph)
Computation type (compute-bound / memory-bound)
Power usage
Instructions retired for each task
Total CPU stalls, etc.

Easily obtained using

D

T
Runtime Profiling

® |t is atechnique for understanding the behavior of the parallel runtime
/ program during the execution
o High-level details
= Total number of tasks created
= Total number of tasks stolen
= Total number of tasks migrated across NUMA domains
= Total number of failed steals
= Task execution time, etc.

o Low-level details Requires special
= Tracing the program execution (computation graph) support
Computation type (compute-bound / memory-bound)

Power usage
Instructions retired for each task
Total CPU stalls, etc.

D

T
Runtime Profiling

® Itis atechnique for understanding the behavior of the parallel runtime
/ program during the execution
o High-level details
= Total number of tasks created
Total number of tasks stolen
Total number of tasks migrated across NUMA domains
Total number of failed steals OEEIEEEL
Task execution time, etc. pmf'.“r.‘g V\?th
o Low-level details | | S erhant]
= Tracing the program execution (computation graph)
= Computation type (compute-bound / memory-bound)
= Power usage

Instructions retired for each task
Total CPU stalls, etc.

D

®
sonemolum
o a0 _oF

| memgEeoEELy
% / emoEOEO '
men® | ome eWEmm

®
oHmen O
\I....‘.- l
Q.Ql«l.lﬂlﬂlllll

_Omem O |
Mo e nonguelus® ¥
: oPa
® omenlEm P
HoTonongyoSuntt
o ougy et
Helgmodmm
one 0"
® Om
oHe (=
e NOHOHO mm

Q..IQ”“I. =
0y® \
mom@uEe ommE m
mem bl“““li |
,,, meomlEOym__ =3 .
Onononoudl®HO0 s

=N
@

‘.““..‘. \\

X [OF] /
HouOHOpH -
Smououe HH

WO, 00

o
e O

\ olwnolii /

_omomefe ¥ .

l.lt!‘lbumm-\\\iwi

0O RO) "
® 1 Het

Tracing the Program Execution

@ g _mE_
® ealugimE as

10)

20, threshold=

Recursive task parallel Fibonacci number calculation (N

Graph will be too big to fit in the slide for large N, hence small value chosen

(¢]

Blue node represents fib(n-2), green node represents async fib(n-1), and orange rectangular boxes are the synchronization

scope for tasﬁs created il(’l that scope

D

Tracing the Program Execution

ET:

Enlarging the

nodes from the

computation
raph of
ibonacci

ET=Execution
time

WT: Wait time

WC id: Id of
worker who
created this task

WE_id: Id of the
worker who
executed this
task (due to
stealing)

Lecture 13: Trace and Replay of Task Parallel Programs

Tracing the Program Execution

Er000
W i
I T
- v —
- —
- —
Fow o o Er0an ET030
Wi W1y Wiz
_— . /N N
- _ /
L v _ v / \ \
T Eroon oo ET0s0 FRoon e From T Er06 ET 00 o o s
Wi Wi Wit W it Wik Woit'51 Wi Wi Wy W1
o N
- // ~
v v \ — e i ~ v } \
_— ¥ S
-
crosss Er 000 cr oo e Ero7ss o £ 0005 cross croms £t 000 L1071
21 W WS W Wi i s i34 W s Ca
\ / l / 0\ / AN i l
A} .4 A / 4 \ 4 v N 2
ET.0005 00 T2 ET0001 ET.0005 ET0007 oo Er000 R0 ET.0005 Ero2n ET0013 Erosn Emoxs ET00 Eroom Erosi Eroom ET0217 R0
(i WS it Wi W Wi W Wi Wk % W6 Wit W0 Wi Wi Wi Wi Vias Wi Wiz WS
AN
' ! ! ' ! /| / |
14 v 2 Va ¥ \ v
ET0001 ET.0007 £ Eroay 00 ET.0008 ET.0010 Er020 ET.0008 ET.000 000 ET.000 ET00s 0230 o ET.000 ET.0005 ET000s ET0001 00
v
l AN \ 7 \ \
/ \ | | ! — | | ! \ \ !
4 N\ \ v v — \] v
»
10002 1. ooy Er 00 100 £t o0 B 0005 1000 E.02% B 0011 ET0ms £t 000 Et0007 £t oo e £t 00 B 000 B 0415 B 0176 B 03ss ET0ms Eroon B 000
W13 Wi Wi Wi Wi s W 0 W1 Wia's Wi Wi Wi 14 Wik W W30 Wi 13
| | | NN |
£T.0008 Em0007 ET.0004 ET0008 ET 000 o013 ET0005
E it Wi Vian W Vian it
! | ! ! | !
Lm0 ET0003 ET003 ET0008 r00m LT0001
W o W Wik W Wi ik
FT0006
i
L1000
Vs
S t I t I t I l I . b . t . . 3 2
- -

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

ET0.397

FT.0s0

Lecture 13: Trace and Replay of Task Parallel Programs

< ., ° . /Tracing the Program Execution
I SN S T S
® . Q ® ®
Se o8 o '.@ .'@ oo %o ® Recursive task
o@o 0 86 0o @ e ce parallel QuickSort
@.. .0.@..@ @. O. 0 @.0 o Array Size 1024’ and
N/3/48, (40 g asenss s & o8 chunk threshold 32
S = oRE N oN ®
e S| Weoo m .M ® Blue node represents
o |2 : = sequential task,
" & % green node
A represents an async,
‘de " and orange
" rectangular boxes are
5 the synchronization

scope for tasks
created in that scope

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 10

Lecture 13: Trace and Replay of Task Parallel Programs

Tracing the Program Execution

® Advantages

o Offline analysis can help in reducing/increasing the task threshold if its
not done automatically by the runtime

o Reducing task management overheads in iterative applications
= How?

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 11

Lecture 13: Trace and Replay of Task Parallel Programs

Iterative Averaging

double A[SIZE+2], A _shadow[SIZE+2];

void recurse(int low, int high) {
if((high - low) > THRESHOLD) {
int mid = (high+low)/2;
future<void> f1 = async([=]() { recurse(low, mid); });
recurse(mid, high);
fl.get();
} else {
for(int j=low; j<high; j++) {
A_shadow[j] = (A[j-1] + A[j+1])/2.0;
}
}
}

void compute(int MAX ITERS) {
for(int i=0; i<MAX_ITERS; i++) {
recurse(1l, SIZE+1);
double* temp = A_shadow;
A_shadow = A;
A = temp;

E CSE513: Parallel Runtimes for Modern Processors

Initialize a one-dimensional
array of (SIZE+2) double’s
with boundarx conditions,
A[0] = 0 and A[SIZE+1] =1

In each iteration, each
Interior element A[]] in
1...SIZE is replaced by the
average of its left and right
neighbours
o Two separate arrays are

used in each iteration, one for

old values and the other for
the new values

After a sufficient number of
iterations, we expect each
element of the array to
converge to A[j] = (AJj-
1]+A[f+1])/2’ for all'j in
1...SIZE

} Z Details: https://classes.engineering.wustl.edu/cse231/core/index.php/lterative_Averaging

© Vivek Kumar

12

Iterative Averaging

® Observations

o Exact same computation graph in each for loop iteration
in compute()

® Optimization

o Improved locality if each workers executes the exact
same set of tasks in each for loop iteration of compute

o Random work-stealing

n It would result in poor locality as each worker could get
different set of tasks in each for loop iteration of compute

o Trace/Replay for improving locality

= Trace (i.e., record) the tasks executed by each worker
during the first iteration of for loop inside compute

. For the rest of iterations of the above for loop of compute,
disable random work-stealing and use the information
gathered during the Trace (i.e., record) phase to replay the
exact set of tasks at each worker

Details: https://classes.engineering.wustl.edu/cse231/core/index.php/lterative_Averaging

1D

.......... :
join_fork_loop>
.......... :

range: [7,10)

range: [7,10)

Lecture 13: Trace and Replay of Task Parallel Programs

Tracing the Program Execution

® Advantages

o Offline analysis can help in reducing/increasing the task threshold if its
not done automatically by the runtime

o Reducing task management overheads in iterative applications
= How?
o Data-race detection

= If there is NO path to connect between two nodes (i.e., they may execute
in parallel), and if they perform read/write or write/write operation on a
shared memory location then it's a data race

More on this later when we will cover data race detection (post mid-sem)
® Drawbacks

o Recording details for each and every task will consume too much
memory (e.g., millions of tasks in Fibonacci 40)

o Profiling overheads as each worker has to do some extra work

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 14

O GesoTeemRemommeseres
Tracing the Program Execution

® Advantages

o Offline analysis can help in reducing/increasing the task threshold if its
not done automatically by the runtime

o Reducing task management overheads in iterative applications
= How?
o Data-race detection

= Ifthere is NO path to connect between two nodes (i.e., they may execute
in parallel), and if they perform read/write or write/writ ,
shared memory location then it's a data race How to avoid these

More on this later when we will cover data race deteg overheads?

® Drawbacks

o Recording details for each and every task will consume too much
memory (ge.g., millions of tasks in Fibonacci 40)

o Profiling overheads as each worker has to do some extra work

D

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Traci

O

E CSE513: Parallel Runtimes for Modern Processors

WO

w1 W2

© Vivek Kumar

ng Async

Let there be three
workers in a work-
stealing based parallel
runtime

(@)

Worker enc,ountering
an async will push that
task into its deque, and
would start working on
the statement after the
async

Each worker has two

counters

o Async Counter (AC)

o Each worker initializes
its AC value =
workerID *

INT_MAX/numWorkers

Steal Counter (SC)
initialized to zero

16

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Traci

O
O QWO

E CSE513: Parallel Runtimes for Modern Processors

O
= =

© Vivek Kumar

ng Async

® \Worker WO
starts a
recursive
task parallel
application

® WO creates

an async A
that is
pushed into
its deque

17

Trace & Replay: Traci

o o~ o

WO
AC=x+1
SC=0

=

w1

AC=y
SC=0

ng Async

® AC atWO0 is
Incremented
and Is
assigned as
the ID of the
Task A
before its
pushed into
WO’s deque

1P

Trace & Replay: Tracing Async

® W1 steals the task A
from WO

Wz:\%? WO ® Itappends anodeina
E private linked list

containing info about

% this stolen task A

W2

o ID of the task
(TID=x+1)

o Worker who
created this task
(W=

o Worker who
executed (stole%
this async (Wg=W1)

o Current Steal
Counter at W1
(SC=0)

>

(@]
I

N

(7]
(@]
1l
o

® W1 then increment its
Steal Counter (SC).
before executing this
stolen task

1P

O GomtTeesRese T
Trace & Replay: Tracing Async

® \W1 creates
® an async C

D

O GomtTeesRese T
Trace & Replay: Tracing Async

@
= =

WO w1
AC=x+1 AC=y+1
SC=0 sc=1

TID=x+1

Wce=W0

We=W1
SC=0

® ACatW1is
Incremented
and Is
assigned as
the ID of the
Task C
before its
pushed into
W1’s deque

1P

O GomtTeesRese T
Trace & Replay: Tracing Async

We=W1
We=W2

W2 steals the task C
from WA1

It appends a node in a

private linked list

containing info about

this stolen task C

o ID of the task
(TID=y+1)

o Worker who
created this task
(W=

o Worker who

executed (stole%
this async (Wg=W2)

o Current Steal
Counter at W2
(SC=0)

W2 then increment its
Steal Counter (SC).
before executing this
stolen task

1P

Trace & Replay: Tracing Async

® \WO creates

O an async B
We=W1
Weg=W2 WO % % %
WO w1 W2
AC=x+1 AC=y+1 AC=z
SC=0 SC=1 SC=1
TID=x+1 TID=y+1
We=WO0 We=W1
We=W1 We=W2
SC=0 SC=0

1P

Trace & Replay: Tracing Async

® ACatWO0is
Incremented

and is ;
We=W1 assigneda as
We=W2 V% v% the ID of the

e Task B _

before its
pushed into
emwo e WO’s deque

SC=0 SC=0

1P

O GomtTeesRese T
Trace & Replay: Tracing Async

® W2 steals the task B
from WO

® Itappend anodeina

private linked list

containing info about

this stolen task B

o) ID of the task
(TID=x+2)

o Worker who
created this task
(We=

o Worker who
executed (stole%
this async (Wg=W2)

o Current Steal
Counter at W2
(SC=1)

We=W1
We=W2

® W2 then increment its
Steal Counter (SC).
before executing this
stolen task

Trace & Replay: Tracing Async

® \W1 creates
® an async D

w1 W2
AC=y+1 AC=z
SC=1 SC=2
TID=x+1 TID=y+1
Wc=W0 We=W1
We=W1 We=W2
SC=0 SC=0
TID=x+2
We=W0
We=W2
SC=1

1P

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

O ® ACatW1is
We=W0 iIncremented

et @9 O wo () and is

We=W1 assigned as
We=W2 wi() WQNOQ wo \%0 v% \,%2 the ID of the
We=W2 Task D
© Ow before its
__ : pushed into
wesvi Weewt W1’s deque
SE(;=0 V\élz(;\z/:/f
Woato

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 27

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Traci

O

WC=W0
We=W1 Q WO
WC=W1
WE=W2

WC=W0

We=W1 O We=W2
We=W0 Q W1

[E CSE513: Parallel Runtimes for Modern Processors

w1() OOWO =

ng Async

W2

WO W1
TID=y+2 TID=x+1
Wce=W1 We=WO0
We=W0 We=W1

SC=0 SC=0

© Vivek Kumar

TID=y+1

We=W1

We=W2
SC=0

TID=x+2

WC=W0

We=W2
SC=1

WO steals the task D
from W1

It append a node in a
private linked list
containing info about
this stolen task D

o

o

ID of the task
(TID=y+2)

Worker who
created this task
(We=WH1

Worker who
executed (stole%
this async (Wg=WO0)

Current Steal
Counter at WO
(SC=0)

WO then increment its
Steal Counter (SC).
before executing this
stolen task

28

Trace & Replay: Tracing Async

® \W1 creates
® an async E

WO w1 W2
AC=x+2 AC=y+2 AC=z
SC=1 SC=1 SC=2
TID=y+2 TID=x+1 TID=y+1
We=W1 We=WO0 We=W1
We=WO0 We=W1 We=W2
SC=0 SC=0 SC=0
TID=x+2
Wce=W0
We=W2
SC=1

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

O ® ACatW1is

We=WO incremented
w1 @Y O wo () and is ;
We=W1 assigned as
We=\2 wi() WC)W OQ WO \%0 v% \,%2 the IgD of the
- We=W2 Task E
WEQv’vVSQ Q\m before its

: — : pushed into
O Ow s o s W1’s deque

We=WO0 We=W1 We=W2
SC=0 SC=0 SC=0

TID=x+2

WC=W0

We=W2
SC=1

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 30

WC=W0
WE=W1

WC=W1
WE=W2

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Traci

O

5 Ow
w1() O () wo

WC=W0

We=W1 O We=W2
We=W0 O W1

WC=W1
WE=W2

O ©w1

[E CSE513: Parallel Runtimes for Modern Processors

=

W2

WO W1
TID=y+2 TID=x+1
Wce=W1 We=WO0
We=W0 We=W1

SC=0 SC=0

@)

© Vivek Kumar

TID=y+1

We=W1

We=W2
SC=0

TID=x+2

WC=W0

We=W2
SC=1

TID=y+3

We=W1

We=W2
Sc=2

ng Async

W2 steals the task E
from W1

It append a node in a
private linked list
containing info about
this stolen task E

o

o

ID of the task
(TID=y+3)

Worker who
created this task
(We=WH1

Worker who
executed (stole%
this async (Wg=W2)

Current Steal
Counter at W2
(SC=2)

W2 then increment its
Steal Counter (SC).
before executing this
stolen task

31

Trace & Replay: Tracing Async

® V2 creates
® an async F

WO w1 W2
AC=x+2 AC=y+3 AC=z
SC=1 SC=1 SC=3
TID=y+2 TID=x+1 TID=y+1
We=W1 We=WO0 We=WA1
We=W0 We=W1 We=W2
SC=0 SC=0 SC=0

TID=x+2
Wc=WO0
We=W2
SC=1
TID=y+3
We=WA1
We=W2

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

O ®@ ACatW2is

Wo=W0 iIncremented
We=W1 WO .
O O () and is
We=W1 = assigned as
We=W2 wi() WC)W O wo \%0 v% > the ID of the
We=W1 We=W2 Task F
weewo © O before its
_ pushed into
We=W1 TID=y+2 TID=x+1 TID=y+1 ’
SC=0 SC=0 SC=0
© O =
TID=y+3
“E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 33

Trace & Replay: Traci

WC=W0
WE=W1

WC=W1

Lecture 13: Trace and Replay of Task Parallel Programs

O

A Q W0
We=\W2 W1© O Q wo = =

WC=W0

We=W1 O We=W2
We=W0 O W1

WC=W1
WE=W2

Q ©w1

weewt @ O
WE =\WA1 w2

[E CSE513: Parallel Runtimes for Modern Processors

ng Async

W2

WO w1
TID=y+2 TID=x+1
We=W1 Wc=WO0
We=WO0 We=W1

SC=0 SC=0

TID=z+1

We=W2

We=W1
SC=1

TID=y+1

We=W1

We=W2
SC=0

© Vivek Kumar

TID=x+2

WC=W0

We=W2
SC=1

TID=y+3

We=W1

We=W2
Sc=2

W1 steals the task F
from W2

It append a node in a
private linked list
containing info about
this stolen task F

o

o

ID of the task
(TID=z+1)

Worker who
created this task
(We=W2

Worker who
executed (stole%
this async (Wg=W1)

Current Steal
Counter at W1
(SC=1)

W1 then increment its
Steal Counter (SC).
before executing this
stolen task

34

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: List Aggregation

® Recursive task
ﬁarallel computation
as now completed

() WO now iterates over

the linked list stored at
each worker

% % % ® WO aggregates each

of the linked list nodes

WO W1 W2 based on the worker
who actually created
the task
corresponding to that
node (value ot W)

o Hence, there would
TID=y+2 TID=x+1 TID=y+1 be numWorker
We=W1 We=W0 We=W1 number of linked
We=W0 We=W1 We=W2 lists
SC=0 SC=0 SC=0 o Each worker would
TID=7+1 D=2 Tllvri]%” Zay:;uneOdes
Wc=W2 We=W0 .
We=W1 WoeW2 ic%ggrl?spondlng to
sc=1 SC=1
TID=y+3
Wc=W1
We=W2
—— SC=2

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 35

O eaet emiteseTseme s
Trace & Replay: List Aggregation

Wo 1 W2
AC=x+2 AC=y+3 AC=z+1
sc=1 SC=2 SC=3
TID=x+2 TID=y+3 TID=z+1
Each worker has We=Wo0 Wc=W1 We=W2
i We=W2 We=W2 We=W1
the list of no_des SC=1 SC=2 sc=1
corresponding
TID=x+1 TID=y+1
to tasks. stolen We=W0 Wc=W1
from itself We=W1 We=W2
SC=0 SC=0
TID=y+2
We=W1
We=W0

3)

Trace & Replay: List Sorting

Stolen task

list sorted at
each worker
based on the

value of TID

=

WO
AC=x+2
SC=1

- TID=x+1
Wc=W0
We=W1

SC=0

=

AC=y+3

SC=2

TID=x+2
Wc=W0
We=W2

SC=1

TID=y+1

We=W1

We=W2
SC=0

=

W2
AC=z+1
SC=3

TID=y+2

We=W1

We=W0
SC=0

TID=z+1

Wc=W2

We=W1
SC=1

TID=y+3
We=W1
We=W2

® WO will sort
each of
these lists
(at each
worker)
based on
the TID
stored
Inside the
nodes

I

Stealing

disabled on

all deques

TID=x+1

Wc=W0

We=W1
SC=0

TID=x+2

Wc=W0

We=W2
SC=1

TID=y+1

Wc=W1

We=W2
SC=0

TID=y+2

We=W1

We=W0
SC=0

TID=z+1

Wc=W2

We=W1
SC=1

TID=y+3
We=W1
We=W2

et
Trace & Replay: Replay Async
X X X

® Replay phase is

essentially
executing the
same recursive
task parallel
program, but b
using the steal
information
stored at each
worker during
the tracing
phase

During the
replay phase,
each worker
would disable
the direct steal
operation on its
deque

I

Trace & Replay: Replay Async
X X X

Arrays created at each
worker to hold stolen
tasks. Size of the array is
the value of Steal Counter

(SC) at that worker

I

WO
AC=x+2
SC=1

TID=x+1

Wc=W0

We=W1
SC=0

TID=x+2

Wc=W0

We=W2
SC=1

=

W1 W2
AC=y+3 AC=z+1
SC=2 SC=3
TID=y+1 TID=z+1
We=W1 We=W2
We=W2 We=W1
SC=0 SC=1
TID=y+2
We=WH1
We=W0
SC=0
TID=y+3
We=WH1
We=W2

Trace & Replay: Replay Async
X X X

Async Counter
(AC) reinitialized
at each workers

= =

w1 W2
AC= AC=z
SC=0 SC=0
Steal Counter (SC)
reinitialized to 0 at TID=x+1 TID=y+1 TID=2+1
Wc=W0 Wce=W1 Wce=W2
each workers We=W1 We=W2 We=W1
SC=0 SC=0 SC=1
TID=x+2 TID=y+2
Wc=WO0 Wc=W1
Weg=W2 We=WO0
SC=1 SC=0
TID=y+3
We=W1
We=W2

I —

Trace & Replay: Replay Async
X X X

o on

=

WO

W2

® WO starts
the
computation
and creates
an async A

AC=z
SC=0
TID=x+1 TID=y+1 TID=z+1
Wce=WO0 Wce=W1 Wce=W2
We=W1 We=W2 We=W1
SC=0 SC=0 SC=1
TID=x+2 TID=y+2
Wc=WO0 Wc=W1
Weg=W2 We=WO0
SC=1 SC=0
TID=y+3
Wc=W1
We=W2
I

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async
X X X

O

O Qwo

E CSE513: Parallel Runtimes for Modern Processors

o
WO WA1 W2
o
TID=x+1 TID=y+1 TID=z+1
=W0 Wce=W1 We=W2
e=W1 We=W2 We=W1
SC=0 SC=0 SC=1
TID=x+2 TID=y+2
Wc=W0 Wce=W1
We=W2 We=W0
sc=1 SC=0
TID=y+3
We=W1
We=W2
SCc=2
© Vivek Kumar

AC at W0 is
incremented and
IS assigned as
the ID of the
Task A before its
ushed into
O’s deque

When W0
attempts to push
task A into its
deque, it would
observe that the
TID of A
matches with the
currently active
steal node on its
linked list

42

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async
X X X

O

WC=W0

We=W1 O Q WO

E CSE513: Parallel Runtimes for Modern Processors

WO W1 W2
[©)
TID=x+1 TID=y+1 TID=z+1
Wc=W0 Wc=W1 We=W2
We=W1 We=W2 We=W1
SC=0 SC=0 SC=1
TID=x+2 TID=y+2
Wc=W0 We=W1
We=W2 We=W0
sc=1 SC=0
TID=y+3
We=W1
We=W2
SCc=2
© Vivek Kumar

WO does not

push task A into
Its deque, but
directly copies it
{R/t10 the array at

Ais copied into
an index value
corresponding to
SC counter
stored inside the
steal info node
of task A at WO
(i.e., 0)

WO remove the
currently
pointing steal
node from its
linked list

43

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async
X X X

O

WC=W0
WE=W1

©

Q WO
wi()

E CSE513: Parallel Runtimes for Modern Processors

o
WO W1 W2 P
TID=x+1 TID=y+1 TID=z+1
Wc=W0 Wce=W1 Wc=W2
We=W1 We=W2 We=W1
SC=0 SC=0 SC=1
TID=x+2 TID=y+2 o
Wc=W0 Wce=W1
We=W2 We=W0
SC=1 SC=0
TID=y+3
We=W1
We=W2
SC=2
© Vivek Kumar

Until now, W1
was waiting for a
task to be
available in its
task array at an
index of its
current SC value
(i.e., 0)

After receiving .
the task, W1 will
increment its SC
value and will
start executin
the transferre
task

W1 generates
an async C once
it starts the
execution of the
transferred task

44

Trace & Replay: Replay Async
X X X

S
N

wn

ﬁ%
1
O N

TID=x+1 TID=y+1 TID=2+1
Wce=W0 e=W1 We=W2
We=W1 E=W2 We=W1
SC=0 SC=0 SC=1
TID=x+2 TID=y+2
Wc=W0 We=W1
We=W2 We=W0
SC=1 SC=0
TID=y+3
We=W1
We=W2

I

Trace & Replay: Replay Async
X X X

We=W1
We=W2

= = =

W2

WO w1
AC=x+1 AC=y+1
SC=0 sc=1

Lim

TID=x+1 TID=y+1 TID=z+1
Wce=WO0 Wce=W1 Wce=W2
Weg=W1 We=W2 We=W1
SC=0 SC=0 SC=1
TID=x+2 TID=y+2
Wc=WO0 Wc=W1
Weg=W2 We=WO0
SC=1 SC=0
TID=y+3
Wc=W1
We=W2
I

Trace & Replay: Replay Async
X X X

We=W1 = =
We=W2 =
Wo w1 W2
AC=x+1 AC=y+1 AC=z
SC=0 SC=1 SC=1
TID=x+1 TID=y+1 TID=z+1
Wc=WO0 Wc=W1 Wc=W2
We=W1 Weg=W2 We=W1
SC=0 SC=0 SC=1
TID=x+2 TID=y+2
Wc=WO0 Wce=W1
We=W2 We=W0
SC=1 SC=0
TID=y+3
Wce=W1
We=W2

I

Trace & Replay: Replay Async
X X X

We=W1 % % %
We=W2 WO
W0 w1 w2
AC=x+1 AC=y+1 AC=z
SC=0 SC=1 SC=1
TID=x+1 TID=y+1 TID=z+1
Wce=WO0 Wce=W1 Wce=W2
We=W1 We=W2 We=W1
SC=0 SC=0 SC=1
TID=x+2 TID=y+2
Wc=WO0 Wce=W1
We=W2 We=WO0
SC=1 SC=0
TID=y+3
Wce=W1
We=W2

I

Trace & Replay: Replay Async
X X X

We=W1 %
We=W2
W2
AC=z
SC=1
TID=x+1 TID=y+1 TID=z+1
Wc=WO0 Wc=W1 Wc=W2
We=W1 Weg=W2 We=W1
SC=0 SC=0 SC=1
TID=x+2 TID=y+2
Wc=WO0 Wce=W1
We=W2 We=W0
SC=1 SC=0
TID=y+3
Wce=W1
We=W2

I

Trace & Replay: Replay Async
X X X

We=W1
We=W2

WO

=

=

W0 w1 w2
AC=x+2 AC=y+1
SC=0 SC=1
TID=x+1 TID=y+1 TID=z+1
Wce=WO0 Wce=W1 Wce=W2
Weg=W1 We=W2 We=W1
SC=0 SC=0 SC=1
TID=x+2 TID=y+2
Wc=WO0 Wc=W1
Weg=W2 We=WO0
SC=1 SC=0
TID=y+3
Wc=W1
We=W2
I

Trace & Replay: Replay Async
X X X

WO w1 w2
AC=x+2 AC=y+1 AC=z
SC=0 sc=1 sc=2
TID=x+1 TID=y+1 TID=z+1
Wce=W0 We=W1 We=W2
We=W1 We=W2 We=W1
SC=0 SC=0 sc=1
TID=x+2 TID=y+2
Wc=W0 We=W1
We=W2 We=W0
sc=1 SC=0
TID=y+3
We=W1
We=W2

I

Trace & Replay: Replay Async
X X X

W2

AC=z

SC=2
TID=x+1 TID=y+1 TID=z+1
Wc=WO0 Wc=W1 Wc=W2
We=W1 Weg=W2 We=W1

SC=0 SC=0 SC=1

TID=x+2 TID=y+2

Wce=W0 We=W1 ¢
We=W2 We=W0
SC=1 SC=0
TID=y+3
We=W1
We=W2

Trace & Replay: Replay Async
X X X

D

=

=

w1 w2
AC=y+2 AC=z
sc=1 sc=2

TID=x+1

Wc=W0

We=W1
SC=0

TID=x+2

Wc=W0

We=W2
SC=1

TID=y+1

We=W1

We=W2
SC=0

TID=y+2

We=W1

We=W0
SC=0

TID=z+1

Wc=W2

We=W1
SC=1

TID=y+3

We=W1

We=W2
SC=2

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async
X X X

O ® Each worker
Wi \cI:vcg)nutli(rjlue its
WE=W1 WO .
O Q ex?lcutlon
Wce=W1 unti _
We=W2 wi() @ O wo = = = completion
We=W0 WO W1 W2 by using the
We=W1 We=W2 tasks
We=W0 O Q\,\m transferred
by the victim
—— — S instead of
Wemwo Wemw1 Wo=w2 they
sC=0 sC=0 sc=1 themselves
TID=x+2 TID=y+2 {)e rformin g
Weawi2 om0 he steal
sc=1 SC=0 operations
TID=y+3
Wc=W1
We=W2
— SC=2
E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 54

O GesoTeemRemommeseres
Reading Materials

® | am not providing any reading material on this topic, as
the lecture slides should be sufficient

D

e T RepyaiTask el progems
Next Lecture

® Mid semester review

D

