
CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of
Task Parallel Programs

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Last Lecture (Recap)

● Three rules to push a task for preserving locality
1. Task whose data spans to multiple NUMA nodes must

be pushed to at root place
2. Task whose data is not local to the worker creating the

task, then the task should be pushed at appropriate
remote DRAM place

3. Worker creating a task with the local data must push it
to its cache place

1

● Four rules to steal a task for preserving locality
1. Attempt to steal from local leaf place
2. Attempt to steal from the local DRAM place
3. Attempt to steal from sibling cache places under same DRAM
4. Attempt to steal from the root place

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Today’s Class
● Trace and replay of asynchronous tasks
● Quiz-2

2

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Runtime Profiling
● It is a technique for understanding the behavior of the parallel runtime

/ program during the execution
o High-level details

§ Total number of tasks created
§ Total number of tasks stolen
§ Total number of tasks migrated across NUMA domains
§ Total number of failed steals
§ Task execution time, etc.

o Low-level details
§ Tracing the program execution (computation graph)
§ Computation type (compute-bound / memory-bound)
§ Power usage
§ Instructions retired for each task
§ Total CPU stalls, etc.

3

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Runtime Profiling
● It is a technique for understanding the behavior of the parallel runtime

/ program during the execution
o High-level details

§ Total number of tasks created
§ Total number of tasks stolen
§ Total number of tasks migrated across NUMA domains
§ Total number of failed steals
§ Task execution time, etc.

o Low-level details
§ Tracing the program execution (computation graph)
§ Computation type (compute-bound / memory-bound)
§ Power usage
§ Instructions retired for each task
§ Total CPU stalls, etc.

4

Easily obtained using
thread local counters

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Runtime Profiling
● It is a technique for understanding the behavior of the parallel runtime

/ program during the execution
o High-level details

§ Total number of tasks created
§ Total number of tasks stolen
§ Total number of tasks migrated across NUMA domains
§ Total number of failed steals
§ Task execution time, etc.

o Low-level details
§ Tracing the program execution (computation graph)
§ Computation type (compute-bound / memory-bound)
§ Power usage
§ Instructions retired for each task
§ Total CPU stalls, etc.

5

Requires special
support

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Runtime Profiling
● It is a technique for understanding the behavior of the parallel runtime

/ program during the execution
o High-level details

§ Total number of tasks created
§ Total number of tasks stolen
§ Total number of tasks migrated across NUMA domains
§ Total number of failed steals
§ Task execution time, etc.

o Low-level details
§ Tracing the program execution (computation graph)
§ Computation type (compute-bound / memory-bound)
§ Power usage
§ Instructions retired for each task
§ Total CPU stalls, etc.

6

Overall goal:
profiling with

minimal
overheads!

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Tracing the Program Execution

7

● Recursive task parallel Fibonacci number calculation (N=20, threshold=10)
o Graph will be too big to fit in the slide for large N, hence small value chosen

● Blue node represents fib(n-2), green node represents async fib(n-1), and orange rectangular boxes are the synchronization
scope for tasks created in that scope

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Tracing the Program Execution

8

● Enlarging the
nodes from the
computation
graph of
Fibonacci

● ET=Execution
time

● WT: Wait time
● WC_id: Id of

worker who
created this task

● WE_id: Id of the
worker who
executed this
task (due to
stealing)

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

9

Tracing the Program Execution

● Steal tree of the same Fibonacci execution using 32
workers

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

10

● Recursive task
parallel QuickSort
o Array size 1024, and

chunk threshold 32
● Blue node represents

sequential task,
green node
represents an async,
and orange
rectangular boxes are
the synchronization
scope for tasks
created in that scope

Tracing the Program Execution

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Tracing the Program Execution
● Advantages

o Offline analysis can help in reducing/increasing the task threshold if its
not done automatically by the runtime

o Reducing task management overheads in iterative applications
§ How?

11

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Iterative Averaging

12

double A[SIZE+2], A_shadow[SIZE+2];

void recurse(int low, int high) {
if((high – low) > THRESHOLD) {

int mid = (high+low)/2;
future<void> f1 = async([=]() { recurse(low, mid); });
recurse(mid, high);
f1.get();

} else {
for(int j=low; j<high; j++) {

A_shadow[j] = (A[j–1] + A[j+1])/2.0;
}

}
}

void compute(int MAX_ITERS) {
for(int i=0; i<MAX_ITERS; i++) {

recurse(1, SIZE+1);
double* temp = A_shadow;
A_shadow = A;
A = temp;

}
}

● Initialize a one-dimensional
array of (SIZE+2) double’s
with boundary conditions,
A[0] = 0 and A[SIZE+1] = 1

● In each iteration, each
interior element A[j] in
1…SIZE is replaced by the
average of its left and right
neighbours
o Two separate arrays are

used in each iteration, one for
old values and the other for
the new values

● After a sufficient number of
iterations, we expect each
element of the array to
converge to A[j] = (A[j-
1]+A[j+1])/2, for all j in
1…SIZE

Details: https://classes.engineering.wustl.edu/cse231/core/index.php/Iterative_Averaging

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Iterative Averaging
● Observations

o Exact same computation graph in each for loop iteration
in compute()

● Optimization
o Improved locality if each workers executes the exact

same set of tasks in each for loop iteration of compute
o Random work-stealing

§ It would result in poor locality as each worker could get
different set of tasks in each for loop iteration of compute

o Trace/Replay for improving locality
§ Trace (i.e., record) the tasks executed by each worker

during the first iteration of for loop inside compute
§ For the rest of iterations of the above for loop of compute,

disable random work-stealing and use the information
gathered during the Trace (i.e., record) phase to replay the
exact set of tasks at each worker

13

Details: https://classes.engineering.wustl.edu/cse231/core/index.php/Iterative_Averaging

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Tracing the Program Execution
● Advantages

o Offline analysis can help in reducing/increasing the task threshold if its
not done automatically by the runtime

o Reducing task management overheads in iterative applications
§ How?

o Data-race detection
§ If there is NO path to connect between two nodes (i.e., they may execute

in parallel), and if they perform read/write or write/write operation on a
shared memory location then it’s a data race
• More on this later when we will cover data race detection (post mid-sem)

● Drawbacks
o Recording details for each and every task will consume too much

memory (e.g., millions of tasks in Fibonacci 40)
o Profiling overheads as each worker has to do some extra work

14

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Tracing the Program Execution
● Advantages

o Offline analysis can help in reducing/increasing the task threshold if its
not done automatically by the runtime

o Reducing task management overheads in iterative applications
§ How?

o Data-race detection
§ If there is NO path to connect between two nodes (i.e., they may execute

in parallel), and if they perform read/write or write/write operation on a
shared memory location then it’s a data race
• More on this later when we will cover data race detection (post mid-sem)

● Drawbacks
o Recording details for each and every task will consume too much

memory (e.g., millions of tasks in Fibonacci 40)
o Profiling overheads as each worker has to do some extra work

15

How to avoid these
overheads?

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

16

W0 W1 W2
AC=x
SC=0

AC=y
SC=0

AC=z
SC=0

● Let there be three
workers in a work-
stealing based parallel
runtime
o Worker encountering

an async will push that
task into its deque, and
would start working on
the statement after the
async

● Each worker has two
counters
o Async Counter (AC)
o Each worker initializes

its AC value =
workerID *
INT_MAX/numWorkers

o Steal Counter (SC)
initialized to zero

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

17

A W0 A

W0 W1 W2
AC=x
SC=0

AC=y
SC=0

AC=z
SC=0

● Worker W0
starts a
recursive
task parallel
application

● W0 creates
an async A
that is
pushed into
its deque

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

18

A W0 x+1

W0 W1 W2
AC=x+1
SC=0

AC=y
SC=0

AC=z
SC=0

● AC at W0 is
incremented
and is
assigned as
the ID of the
Task A
before its
pushed into
W0’s deque

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

19

A W0
WC=W0
WE=W1

W0 W1 W2
AC=x+1
SC=0

AC=y
SC=1

AC=z
SC=0

x+1

TID=x+1
WC=W0
WE=W1
SC=0

● W1 steals the task A
from W0

● It appends a node in a
private linked list
containing info about
this stolen task A
o ID of the task

(TID=x+1)
o Worker who

created this task
(WC=W0)

o Worker who
executed (stolen)
this async (WE=W1)

o Current Steal
Counter at W1
(SC=0)

● W1 then increment its
Steal Counter (SC)
before executing this
stolen task

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

20

A

C

W0
WC=W0
WE=W1

W1
W0 W1 W2

AC=x+1
SC=0

AC=y
SC=1

AC=z
SC=0

C

TID=x+1
WC=W0
WE=W1
SC=0

● W1 creates
an async C

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

21

W0 W1 W2
AC=x+1
SC=0

AC=y+1
SC=1

AC=z
SC=0

y+1

TID=x+1
WC=W0
WE=W1
SC=0

A

C

W0
WC=W0
WE=W1

W1

● AC at W1 is
incremented
and is
assigned as
the ID of the
Task C
before its
pushed into
W1’s deque

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

22

WC=W1
WE=W2

W0 W1 W2
AC=x+1
SC=0

AC=y+1
SC=1

AC=z
SC=1

y+1

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

A

C

W0
WC=W0
WE=W1

W1

● W2 steals the task C
from W1

● It appends a node in a
private linked list
containing info about
this stolen task C
o ID of the task

(TID=y+1)
o Worker who

created this task
(WC=W1)

o Worker who
executed (stolen)
this async (WE=W2)

o Current Steal
Counter at W2
(SC=0)

● W2 then increment its
Steal Counter (SC)
before executing this
stolen task

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

23

A

BC

W0

W0

WC=W0
WE=W1

WC=W1
WE=W2 W1

W0 W1 W2
AC=x+1
SC=0

AC=y+1
SC=1

AC=z
SC=1

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

B

● W0 creates
an async B

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

24

W0 W1 W2
AC=x+2
SC=0

AC=y+1
SC=1

AC=z
SC=1

x+2

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

A

BC

W0

W0

WC=W0
WE=W1

WC=W1
WE=W2 W1

● AC at W0 is
incremented
and is
assigned as
the ID of the
Task B
before its
pushed into
W0’s deque

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

25

WC=W0
WE=W2

W0 W1 W2
AC=x+2
SC=0

AC=y+1
SC=1

AC=z
SC=2

x+2

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

A

BC

W0

W0

WC=W0
WE=W1

WC=W1
WE=W2 W1

● W2 steals the task B
from W0

● It append a node in a
private linked list
containing info about
this stolen task B
o ID of the task

(TID=x+2)
o Worker who

created this task
(WC=W0)

o Worker who
executed (stolen)
this async (WE=W2)

o Current Steal
Counter at W2
(SC=1)

● W2 then increment its
Steal Counter (SC)
before executing this
stolen task

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

26

A

BC

D

W0

W0

WC=W0
WE=W1

WC=W1
WE=W2

WC=W0
WE=W2

W1

W1

W0 W1 W2
AC=x+2
SC=0

AC=y+1
SC=1

AC=z
SC=2

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

D

● W1 creates
an async D

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

27

W0 W1 W2
AC=x+2
SC=0

AC=y+2
SC=1

AC=z
SC=2

y+2

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

A

BC

D

W0

W0

WC=W0
WE=W1

WC=W1
WE=W2

WC=W0
WE=W2

W1

W1

● AC at W1 is
incremented
and is
assigned as
the ID of the
Task D
before its
pushed into
W1’s deque

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

28

A

BC

D

W0

W0

WC=W0
WE=W1

WC=W1
WE=W2

WC=W0
WE=W2

W1

WC=W1
WE=W0 W1

W0 W1 W2
AC=x+2
SC=1

AC=y+2
SC=1

AC=z
SC=2

y+2

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

● W0 steals the task D
from W1

● It append a node in a
private linked list
containing info about
this stolen task D
o ID of the task

(TID=y+2)
o Worker who

created this task
(WC=W1)

o Worker who
executed (stolen)
this async (WE=W0)

o Current Steal
Counter at W0
(SC=0)

● W0 then increment its
Steal Counter (SC)
before executing this
stolen task

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

29

A

BC

D

E

W0

W0

WC=W0
WE=W1

WC=W1
WE=W2

WC=W0
WE=W2

W1

WC=W1
WE=W0 W1

W1

W0 W1 W2
AC=x+2
SC=1

AC=y+2
SC=1

AC=z
SC=2

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

E

● W1 creates
an async E

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

30

A

BC

D

E

W0

W0

WC=W0
WE=W1

WC=W1
WE=W2

WC=W0
WE=W2

W1

WC=W1
WE=W0 W1

W1

W0 W1 W2
AC=x+2
SC=1

AC=y+3
SC=1

AC=z
SC=2

y+3

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

● AC at W1 is
incremented
and is
assigned as
the ID of the
Task E
before its
pushed into
W1’s deque

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

31

A

BC

D

E

W0

W0

WC=W0
WE=W1

WC=W1
WE=W2

WC=W0
WE=W2

W1

WC=W1
WE=W0

WC=W1
WE=W2

W1

W1

W0 W1 W2
AC=x+2
SC=1

AC=y+3
SC=1

AC=z
SC=3

y+3

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

● W2 steals the task E
from W1

● It append a node in a
private linked list
containing info about
this stolen task E
o ID of the task

(TID=y+3)
o Worker who

created this task
(WC=W1)

o Worker who
executed (stolen)
this async (WE=W2)

o Current Steal
Counter at W2
(SC=2)

● W2 then increment its
Steal Counter (SC)
before executing this
stolen task

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

32

A

BC

D

E

W0

W0

WC=W0
WE=W1

WC=W1
WE=W2

WC=W0
WE=W2

W1

WC=W1
WE=W0

F

WC=W1
WE=W2

W1

W1

W2

W0 W1 W2
AC=x+2
SC=1

AC=y+3
SC=1

AC=z
SC=3

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

F

● W2 creates
an async F

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

33

A

BC

D

E

W0

W0

WC=W0
WE=W1

WC=W1
WE=W2

WC=W0
WE=W2

W1

WC=W1
WE=W0

F

WC=W1
WE=W2

W1

W1

W2

W0 W1 W2
AC=x+2
SC=1

AC=y+3
SC=1

AC=z+1
SC=3

z+1

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

● AC at W2 is
incremented
and is
assigned as
the ID of the
Task F
before its
pushed into
W2’s deque

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Tracing Async

34

A

BC

D

E

W0

W0

WC=W0
WE=W1

WC=W1
WE=W2

WC=W0
WE=W2

W1

WC=W1
WE=W0

F

WC=W1
WE=W2

WC=W2
WE=W1

W1

W1

W2

W0 W1 W2
AC=x+2
SC=1

AC=y+3
SC=2

AC=z+1
SC=3

z+1

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

● W1 steals the task F
from W2

● It append a node in a
private linked list
containing info about
this stolen task F
o ID of the task

(TID=z+1)
o Worker who

created this task
(WC=W2)

o Worker who
executed (stolen)
this async (WE=W1)

o Current Steal
Counter at W1
(SC=1)

● W1 then increment its
Steal Counter (SC)
before executing this
stolen task

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: List Aggregation

35

W0 W1 W2
AC=x+2
SC=1

AC=y+3
SC=2

AC=z+1
SC=3

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

● Recursive task
parallel computation
has now completed

● W0 now iterates over
the linked list stored at
each worker

● W0 aggregates each
of the linked list nodes
based on the worker
who actually created
the task
corresponding to that
node (value of WC)
o Hence, there would

be numWorker
number of linked
lists

o Each worker would
finally have nodes
with WC value
corresponding to
itself

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: List Aggregation

36

W0 W1 W2
AC=x+2
SC=1

AC=y+3
SC=2

AC=z+1
SC=3

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

Each worker has
the list of nodes
corresponding
to tasks stolen

from itself

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: List Sorting

37

W0 W1 W2
AC=x+2
SC=1

AC=y+3
SC=2

AC=z+1
SC=3

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

Stolen task
list sorted at
each worker
based on the
value of TID

● W0 will sort
each of
these lists
(at each
worker)
based on
the TID
stored
inside the
nodes

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async

38

W0 W1 W2
AC=x+2
SC=1

AC=y+3
SC=2

AC=z+1
SC=3

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

Stealing
disabled on
all deques

● Replay phase is
essentially
executing the
same recursive
task parallel
program, but by
using the steal
information
stored at each
worker during
the tracing
phase

● During the
replay phase,
each worker
would disable
the direct steal
operation on its
deque

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async

39

W0 W1 W2
AC=x+2
SC=1

AC=y+3
SC=2

AC=z+1
SC=3

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

Arrays created at each
worker to hold stolen

tasks. Size of the array is
the value of Steal Counter

(SC) at that worker

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async

40

W0 W1 W2
AC=x
SC=0

AC=y
SC=0

AC=z
SC=0

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

Steal Counter (SC)
reinitialized to 0 at

each workers

Async Counter
(AC) reinitialized
at each workers

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async

41

W0 W1 W2
AC=x
SC=0

AC=y
SC=0

AC=z
SC=0

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

A W0
A

● W0 starts
the
computation
and creates
an async A

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async

42

W0 W1 W2
AC=x+1
SC=0

AC=y
SC=0

AC=z
SC=0

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

A W0
x+1

● AC at W0 is
incremented and
is assigned as
the ID of the
Task A before its
pushed into
W0’s deque

● When W0
attempts to push
task A into its
deque, it would
observe that the
TID of A
matches with the
currently active
steal node on its
linked list

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async

43

W0 W1 W2
AC=x+1
SC=0

AC=y
SC=0

AC=z
SC=0

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

A W0
WC=W0
WE=W1

x+1

● W0 does not
push task A into
its deque, but
directly copies it
into the array at
W1

● A is copied into
an index value
corresponding to
SC counter
stored inside the
steal info node
of task A at W0
(i.e., 0)

● W0 remove the
currently
pointing steal
node from its
linked list

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async

44

W0 W1 W2
AC=x+1
SC=0

AC=y
SC=1

AC=z
SC=0

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

A

C

W0
WC=W0
WE=W1

W1

C

● Until now, W1
was waiting for a
task to be
available in its
task array at an
index of its
current SC value
(i.e., 0)

● After receiving
the task, W1 will
increment its SC
value and will
start executing
the transferred
task

● W1 generates
an async C once
it starts the
execution of the
transferred task

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async

45

W0 W1 W2
AC=x+1
SC=0

AC=y+1
SC=1

AC=z
SC=0

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

y+1A

C

W0
WC=W0
WE=W1

W1

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async

46

W0 W1 W2
AC=x+1
SC=0

AC=y+1
SC=1

AC=z
SC=0

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

WC=W1
WE=W2

y+1

A

C

W0
WC=W0
WE=W1

W1

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async

47

W0 W1 W2
AC=x+1
SC=0

AC=y+1
SC=1

AC=z
SC=1

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

WC=W1
WE=W2

A

C

W0
WC=W0
WE=W1

W1

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async

48

W0 W1 W2
AC=x+1
SC=0

AC=y+1
SC=1

AC=z
SC=1

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

A

BC

W0

W0

WC=W0
WE=W1

WC=W1
WE=W2 W1

B

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async

49

W0 W1 W2
AC=x+2
SC=0

AC=y+1
SC=1

AC=z
SC=1

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

x+2
A

BC

W0

W0

WC=W0
WE=W1

WC=W1
WE=W2 W1

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async

50

W0 W1 W2
AC=x+2
SC=0

AC=y+1
SC=1

AC=z
SC=1

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

x+2

A

BC

W0

W0

WC=W0
WE=W1

WC=W1
WE=W2 W1

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async

51

W0 W1 W2
AC=x+2
SC=0

AC=y+1
SC=1

AC=z
SC=2

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

A

BC

D

W0

W0

WC=W0
WE=W1

WC=W1
WE=W2

WC=W0
WE=W2

W1

W1

D

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async

52

W0 W1 W2
AC=x+2
SC=0

AC=y+2
SC=1

AC=z
SC=2

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

A

BC

D

W0

W0

WC=W0
WE=W1

WC=W1
WE=W2

WC=W0
WE=W2

W1

W1

y+2

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async

53

W0 W1 W2
AC=x+2
SC=0

AC=y+2
SC=1

AC=z
SC=2

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

A

BC

D

W0

W0

WC=W0
WE=W1

WC=W1
WE=W2

WC=W0
WE=W2

W1

WC=W1
WE=W0 W1

y+2

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Trace & Replay: Replay Async

54

W0 W1 W2
AC=x+2
SC=1

AC=y+2
SC=1

AC=z
SC=2

TID=x+1
WC=W0
WE=W1
SC=0

TID=y+1
WC=W1
WE=W2
SC=0

TID=x+2
WC=W0
WE=W2
SC=1

TID=y+2
WC=W1
WE=W0
SC=0

TID=y+3
WC=W1
WE=W2
SC=2

TID=z+1
WC=W2
WE=W1
SC=1

A

BC

D

W0

W0

WC=W0
WE=W1

WC=W1
WE=W2

WC=W0
WE=W2

W1

WC=W1
WE=W0 W1

● Each worker
would
continue its
execution
until
completion
by using the
tasks
transferred
by the victim
instead of
they
themselves
performing
the steal
operations

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Reading Materials
● I am not providing any reading material on this topic, as

the lecture slides should be sufficient

55

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 13: Trace and Replay of Task Parallel Programs

Next Lecture
● Mid semester review

56

