Lecture 14: Mid Semester Review

Vivek Kumar
Computer Science and Engineering
IIIT Delhi
vivekk@iiitd.ac.in

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 14: Mid Semester Review

Introduction to Parallel Programming

Entire System

Time = Ts1 Time = TSZ int main(int argc, char *argv[]) {
: uint64_t result;
= N if (argc < 2) { return 1; }
Part of the system that CANNOT be improved Part of the system that CAN be improved uint64_t n = strtoul(argv[1l], NULL, 0);
if (n <30 {

- result = fib(n);
} else {
X TS1 + TSZ uint64_t x, y;
Speedup using P processes = -e—eeeeeeemem- |mp|'ovement std::thread TI([&] O { x = fib(n-1); 1);
Tl // main can continue executing
S1 P y = fib(n-2);

// wait for the thread to terminate.
T1l.joinQ;

® Free lunch is now over!

cout<<"Fibonacci of ”<<n<<" is "<<result<<endl;
return 0;

o Multicore processors everywhere)

) std::mutex _mitx;
. Am d a h I S I aW std::condition_variable _cv;

bool available=false;

. E X p I i C i t m u I ti t h re a d i n g L1: std::unique_lock Ick(_mtx); II:Z ;:(!je:l:vua?li:sfaglf(:k e

L2: _cv.wait(Ick, []() { return available;}); L7: create_data();

- - L3: _data(); L8: available=true;
. T h re a d Sy n C h ro n I Za tl O n L4: :?/2;:;::#;5:; L9: _cv.notify_one(Ick);
L10:}

Consumer Producer

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Parallel Runtime Systems

® Parallel runtime system for task-scheduling
o Work-sharing
o Work-stealing

A

\M
Push Push

= =

w1 w2

D

Context Switching in User Space

User Mode User Mode

Process A
Process B
Process A

® User Level
Threads v/s i Q
Kernel Level Q Q
Threads I\ .

® Boost fibers S

e m U |ateS Kernel Mode Kernel Mode

Process B

std::thread
operations, but as
a ULT instead of a
KLT

#include <boost/fiber/all.hpp>

#define millisleep(x) boost::this fiber::sleep for(std::chrono::milliseconds(a))
boost::fibers::fiber f1 ([=]() { millisleep(500); }); // Fiber F1 launched
boost::fibers::fiber f2 ([=]() { millisleep(100); }); // Fiber F2 launched
f1.join(); // Wait for termination of F1

f2.join(); // Wait for termination of F2

1P

Suspended queue
Fiber Manager Fiber Manager '
Ready queue —

Scheduling ®
algorithms L

]]
A
1
EIEE

| - || - H

=

I-

Kernel thread Kernel thread

boost::fibers::mutex mtx;
boost::fibers::condition_variable cnd;
std::string str;

boost::fibers::fiber f1([=]() {
std::unique_lock<boost: :fibers: :mutex> lck(mtx);
if(str.size() == 0) {
cnd.wait(lck);
}

cout << str << endl;

s

boost::fibers::fiber f2([=]() {
std::unique_lock<boost: :fibers: :mutex> lck(mtx);
str = “Hello Fiber”;
cnd.notify one();

s

f1.join();
f2.join(); : ?

Lecture 14: Mid Semester Review

Parallel Runtime Overheads

® Task granularity affects overheads

o Each async is heap allocated, and also has some metadata associated with it

= User should choose appropriate task granularity

= Tasks near the bottom of recursion tree are small computation, where task
aggregation could be performed by switching to an iterative version from recursive

® Deque operations are costly

o Forimplementing any thread-safe (concurrent) data structure we always have
to use some sort of mutual exclusion that avoids the race condition

o Reducing overheads?

= Steals are rare
. Majority of the tasks produced by the victim are consumed by itself

. Each victim should minimize accessing its “concurrent” deque for push/pop by using
a mix of private and shared task pools

Push/pop from private pool, but ensure task(s) availability in shared pool to support stealing

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 14: Mid Semester Review

Memory Consistency

® Memory latency continues to limit the performance of
multicore processors
o Several optimizations inside processors for hiding the —
load/store latency

= As a side effect of these optimizations, load/store inside a
Program could be reordered, and hence may not happen in
he source code order as expected by programmer

S2

® Memory consistency model defines a set of rules for
valid set of reordering of two different memory
accesses

o Both compiler and processor can perform reordering

® Sequential consistency is the most primitive form of
memory consistency that basically says memory
access to any location always happens atomically,
and the effect is visible to each and every core
o Modern programming Iangéjages supports sequential

consistency only for code block within a mutex lock/unlock
operation (Data Race Free)

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Thread 1

~ A=1

~

if (B == 0)
\, print “Hello”;

Thread 2

MEMORY

Hardware Memory Model

READ READ WRITE
READ WRITE READ
® Rule-5: Concurrent Writes by two cores can be seen in different order
o Each core may perceive its own Write occurring before that of other

Corel Core2 Thread 1 Thread 2
ro =B rit = A a 5
Store buffer ‘Store buffer @) @)
Canr@ = @ andr1 = 0? Executed
I =B (=40)
Memory Fli=TA(=0)
A=20
B=20

1P

x86-TSO
memory model
(Intel/AMD)

Store buffer

Language Memory Model

std::atomic<int> X, Y, Z;

/l Some memory operations

X.store(1, memory_order_seq_cst);

/l Some memory operations
Y.load(memory_order_relaxed);
/| Some memory operations

2

Z.load(memory_order_acquire);

/l Some memory operations

B

Z.store(1, memory_order_release);

std::atomic<bool> X(false), Y(false);

Thread 1 Thread 2

X.store(true, memory_order_relaxed);

Y.store(true, memory_order_relaxed);
—_— Svnc

with

Not

}

if(Y.load(memory_order_relaxed) ==
assert(X.load(memory_order_relaxed))

true) {

std::atomic<bool> Flag(false);

Memory Thread 1 Thread 2
Operations-1
(MO1) { PushTask();

Flag. store(true) h’°”"2eS~w:'th

if(Flag.load() == true) {

PopTask();

}

MO1 happens-before MO2

MO1 visible to
Thread-2 before
it performs MO2

I

Memory
Operations-2
(MO2)

1P

std::atomic<bool> A(false), B(false);
int non_atomic=0;

MO1 happer -before MO2

Thread 1 Thread 2 »
MO1 visib. ~ to
non_atomic =10 // Memory Operations MO1 Thread-2 be> -e
A .store(true, memory_order_release); it perform . MO..
Synchro if(B.load(mem r_acquire) == true) {
With /7 Memory Operatlons MO2
assert(non_atomic == 10)

}

Lecture 14: Mid Semester Review

NUMA Aware Work-Stealing

® High performance can be achieved
on a NUMA architecture only if the
task and its data are collocated, and
’ - =~ @ e [ETE]

Is local to the worker executing that =t o,y

taSk ' async-1

o By default, Linux uses First-Touch » ®..2
policy for physical page allocation

"9o000 000 @
® Random work-stealing would hurt
the locality over NUMA machine due

to random victim selection
o Use hierarchical work-stealing

async-4

E3 z
i s

DRAM DRAM

On chip memory On chip memory
controller controller

~ N
%\,%2 w3 & wa

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Join_fork_loop>
I racelReplay Wi w2 w3 Wi W2 W3

Chunk-2 Chunk-1 Chunk-3| |Chunk-2 Chunk-1 Chunk-3

A

double A[SIZE+2], A_shadow[SIZE+2]; @ @ @
void recurse(int low, int high) { L Tt ;
if((high - low) > THRESHOLD) {
int mid = (high+low)/2;
future<void> f1 = async([=]() { recurse(low, mid); });
recurse(mid, high);
fl.get();
s Wi w2 ws Wi w2 w3
for(int j=low; j<high; j++) { Chunk-1 Chunk-3 Chunk-2 Chunk-2 Chunk-1 Chunk-3
A_shadow[j] = (A[j-1] + A[j+1])/2.0; @ @ @
Y T H
. ST
void compute(int MAX_ITERS) { <join_fork_loop>
for(int i=0; i<MAX_ITERS; i++) {
oo o Tl o wi o w2 w3 wi o w2 W3
A shadow o T LEnAcos Chunk-3 Chunk-2 Chunk-1| | Chunk-2 Chunk-1 Chunk-3
— -)
A = temp; Cer:2) (rer:2)
S =
} <join_fork_loop>
° Improved locality if each workers executes the exact
same set of tasks in each for loop iteration of compute -
) Trace/Replay for improving locality
o Trace (i.e., record) the tasks executed by each worker ChW1k 3 ChWZk 1 ChW3k 2 Wi W2 W3
during the first iteration of for loop inside’ compute unk- unk- unk-2f | Chunk-2 Chunk-1 Chunk-3
For the rest of iteratjons of the above for loop of compute,
° disable random work-stealing and use the ian)ormatior? @ @ @
gathered during the Trace (i.e., record) phase to replay the "™ i

Sxact set offasks al each worker it doc Random work-stealing Trace/Replay

D

Lecture 14: Mid Semester Review

Midterm Exams

® Midterm exam will be held on 16/10/22 1(Sunday) in Room no.
C21 old-academic block from 10am—11am
o Total weightage is 10%

O IIt {s your responsibility to arrive on time. No extra time if you arrive
ate

o Closed-notes, closed-book, closed-laptop written exam
Syllabus includes Lectures 2—-13

o No penalt}/ for minor syntax errors in programminlg related questions.
Minor syntax errors only include missing semicolon, missing
braces, and spell mistakes.

= However, you must ensure that your program is: a) clear to understand,
and b) has proper indentation. If these two perquisites are not met, then
thet rr](a_rksc.]:ﬂlocated will be final and reevaluation requests will not be
entertaine

O

[E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 10

