
CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 14: Mid Semester Review

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 14: Mid Semester Review

1

● Free lunch is now over!
o Multicore processors everywhere

● Amdahl’s law
● Explicit multithreading
● Thread synchronization

Introduction to Parallel Programming



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 14: Mid Semester Review

Parallel Runtime Systems
● Parallel runtime system for task-scheduling

o Work-sharing
o Work-stealing

2



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 14: Mid Semester Review

Context Switching in User Space
● User Level 

Threads v/s 
Kernel Level 
Threads

● Boost fibers 
emulates 
std::thread 
operations, but as 
a ULT instead of a 
KLT

3



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 14: Mid Semester Review

Parallel Runtime Overheads
● Task granularity affects overheads

o Each async is heap allocated, and also has some metadata associated with it
§ User should choose appropriate task granularity
§ Tasks near the bottom of recursion tree are small computation, where task 

aggregation could be performed by switching to an iterative version from recursive

● Deque operations are costly
o For implementing any thread-safe (concurrent) data structure we always have 

to use some sort of mutual exclusion that avoids the race condition
o Reducing overheads?

§ Steals are rare
• Majority of the tasks produced by the victim are consumed by itself
• Each victim should minimize accessing its “concurrent” deque for push/pop by using 

a mix of private and shared task pools
• Push/pop from private pool, but ensure task(s) availability in shared pool to support stealing

4



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 14: Mid Semester Review

Memory Consistency

5

● Memory latency continues to limit the performance of 
multicore processors
o Several optimizations inside processors for hiding the 

load/store latency
§ As a side effect of these optimizations, load/store inside a 

program could be reordered, and hence may not happen in 
the source code order as expected by programmer

● Memory consistency model defines a set of rules for 
valid set of reordering of two different memory 
accesses
o Both compiler and processor can perform reordering

● Sequential consistency is the most primitive form of 
memory consistency that basically says memory 
access to any location always happens atomically, 
and the effect is visible to each and every core
o Modern programming languages supports sequential 

consistency only for code block within a mutex lock/unlock 
operation (Data Race Free)



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 14: Mid Semester Review

Hardware Memory Model

6

● x86-TSO 
memory model 
(Intel/AMD)

● Store buffer



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 14: Mid Semester Review

Language Memory Model

7



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 14: Mid Semester Review

NUMA Aware Work-Stealing
● High performance can be achieved 

on a NUMA architecture only if the 
task and its data are collocated, and 
is local to the worker executing that 
task
o By default, Linux uses First-Touch 

policy for physical page allocation
● Random work-stealing would hurt 

the locality over NUMA machine due 
to random victim selection
o Use hierarchical work-stealing

8



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 14: Mid Semester Review

Trace/Replay

9

W1
Chunk-2

W2
Chunk-1

W3 
Chunk-3

W1
Chunk-1

W2
Chunk-3

W3 
Chunk-2

W1
Chunk-3

W2
Chunk-2

W3 
Chunk-1

W1
Chunk-3

W2
Chunk-1

W3 
Chunk-2

W1
Chunk-2

W2
Chunk-1

W3 
Chunk-3

W1
Chunk-2

W2
Chunk-1

W3 
Chunk-3

W1
Chunk-2

W2
Chunk-1

W3 
Chunk-3

W1
Chunk-2

W2
Chunk-1

W3 
Chunk-3

Random work-stealing Trace/Replay

● Improved locality if each workers executes the exact 
same set of tasks in each for loop iteration of compute

● Trace/Replay for improving locality
o Trace (i.e., record) the tasks executed by each worker 

during the first iteration of for loop inside compute
o For the rest of iterations of the above for loop of compute, 

disable random work-stealing and use the information 
gathered during the Trace (i.e., record) phase to replay the 
exact set of tasks at each worker



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 14: Mid Semester Review

Midterm Exams
● Midterm exam will be held on 16/10/22 (Sunday) in Room no. 

C21 old-academic block from 10am—11am
o Total weightage is 10%
o It is your responsibility to arrive on time. No extra time if you arrive 

late
o Closed-notes, closed-book, closed-laptop written exam
o Syllabus includes Lectures 2–13
o No penalty for minor syntax errors in programming related questions. 

Minor syntax errors only include missing semicolon, missing 
braces, and spell mistakes. 
§ However, you must ensure that your program is: a) clear to understand, 

and b) has proper indentation. If these two perquisites are not met, then 
the marks allocated will be final and reevaluation requests will not be 
entertained

10


