
CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming
using SIMD Vector Units

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

Today’s Class
● Flynn’s classification
● SIMD vector extensions
● SIMD programming techniques
● Limitations of vectorization
● Vector Class Library for SIMD programming

1

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

Flynn’s Classification of Parallel Computer

2Source: https://computing.llnl.gov/tutorials/parallel_comp/

Single Instruction Single Data

Single Instruction Multiple Data

Multiple Instruction Single Data

Multiple Instruction Multiple Data

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

Flynn’s Classification of Parallel Computer

3Source: https://computing.llnl.gov/tutorials/parallel_comp/

Single Instruction Single Data

Single Instruction Multiple Data

Multiple Instruction Single Data

Multiple Instruction Multiple Data

Vectors and GPUs

Multicore processing

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

Exploiting Parallelism on Modern Processors
● Modern processors supports three different kinds of

parallelism
o Instruction level parallelism

§ Done automatically by the hardware
o Thread (Task) level parallelism (multicore)

§ Achieved by the help of compiler/programmer
o Vector (Data) level parallelism

§ Achieved by the help of compiler (automatic) or programmer (manual)

4

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

Today’s Class
● Flynn’s classification
● SIMD vector extensions
● SIMD programming techniques
● Limitations of vectorization
● Vector Class Library for SIMD programming

5

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

SIMD Vector Extensions
● What it is?

o Extension of the ISA
o Special registers that support instructions to

operate upon vectors than scalar values
§ Each core has its own SIMD execution units
§ Parallel computation on short (length 2, 4, 8..)

vectors of integers or floats
o Names: SSE, SSE2, AVX, AVX2, AVX512, etc.

● What is their usage?
o Free data parallelism units capable of providing

(theoretical) speedups equal to the vector width
§ Single instruction operates on multiple data

elements simultaneously

● Where do they exists?
o On almost all modern processor, e.g., Intel & AMD

6

r1 r2

r3

Scalar
(1 operation)

add r3, r1, r2

v1 v2

v3

Vector
(N operations)

add.vv v3, v1, v2

Vec
tor

 w
idt

h

Picture source: Prof. Patterson’s Lecture on vector processing

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

Architectural Support for SIMD
● SIMD operation is

supported on processors
by adding more ALUs to
each core, and by using
wide registers (greater
than 32 bit)
o Thanks to Moore’s law

that small size
transistors leave ample
space for adding other
functionalities

● Each CPU cycle can
now operate on more
than one 32-bit value

● Increasing vector
register width require
adding new instructions

7

vr1 vr2

ALU

r1 r2

r3

SISD operation on scalars
vr3

ALU ALU ALU ALU

SIMD operation on vectors

Multicore processor supporting SIMD operations

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

History of SIMD Vector Support in Intel Chips
Year

Released
Name Register Width

(BIT)
Width
(Float)

1996 MMX (Multimedia Extension) 64 2

1999 SSE (Streaming SIMD Extension) 128 4

SSE2 128 4

SSE3 128 4

SSE4 128 4

2011 AVX (Advanced Vector Extensions) 256 8

AVX2 256 8

2013 AVX-512 512 16

8

● Every new
generation of
SSE or AVX
supports new
and
improved set
of
instructions

● Backward
compatibility
with every
new
generation

Source: https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

Check Supported SIMD Instructions
● Use the following command to check the SIMD instructions supported by

your processor
$ cat /proc/cpuinfo | grep flag | tail -1
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr
pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2
ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc
arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc
cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx
smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1
sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave
avx f16c rdrand lahf_lm abm cpuid_fault epb
invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi
flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2 smep
bmi2 erms invpcid xsaveopt dtherm ida arat pln pts
md_clear flush_l1d

9

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

Today’s Class
● Flynn’s classification
● SIMD vector extensions
● SIMD programming techniques
● Limitations of vectorization
● Vector Class Library for SIMD programming

10

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

SIMD Programming Techniques
● Applied either at compile time or link-time

o Compiler based auto-vectorization
o Compiler pragmas (e.g., OpenMP simd)
o Calls to Vector Class Library (VCL)
o Hand coded compiler intrinsic
o Inline assembly code

11

Easy to use, but low performance

Ninja Level, but best performance

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

Compiler Perspective
● Vectorization is similar to loop unrolling

o Unroll by “N” iterations, where “N” is vector width

12

for (i=0; i<N; i++) {
c[i] = a[i] + b[i];

}

for (i=0; i<N; i+=4) {
c[i+0] = a[i+0] + b[i+0];
c[i+1] = a[i+1] + b[i+1];
c[i+2] = a[i+2] + b[i+2];
c[i+3] = a[i+3] + b[i+3];

}

for (i=0; i<N; i+=4) {
Load a[i+0 : i+3] in v0;
Load b[i+0 : i+3] in v1;
v0 = v1 + v0;
Store v0 in c[i+0 : i+3];

}

Vector width
= 128 bit

● How to inform the compiler for using vectorization?
o Intel compiler starts vectorization with -O2 optimization flag
o GCC compiler starts vectorization with -O3 optimization flag
o By default, both compilers use SSE instructions and 128 bit vector width

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

Today’s Class
● Flynn’s classification
● SIMD vector extensions
● SIMD programming techniques
● Limitations of vectorization
● Vector Class Library for SIMD programming

13

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

Limitations of Auto-Vectorization
● Loop iterations should not have different control flow

o ”if” or “switch” statements cannot be used for selective calculation of
data elements
§ Although, ”if” or “switch” statements may be used as masked

statements, i.e., calculation is performed for all elements, but result is
stored selectively

for (i=0; i<N; i++) { int s = B[i] + C[i]; if (s>10) A[i] = s; else A[i] = 0; }

● Loop iterations should be independent, e.g., a[b[i]] not
allowed

● Loop should only use basic math functions, e.g., pow, sqrt,..

14

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

General Limitations of Vectorization (1/6)
● General restrictions for vectorization, that applies to both

compiler-based auto-vectorization, as well as manual
vectorization
o Loop size should be countable at runtime

§ Loop size not required during compile time, but it should not change
during execution (runtime)
• Implies single entry and single exit for the loop (no break statements)

o Only a single arithmetic type operation, e.g., cannot intermix “+”, “x”,
“-”, etc. within a vector operation

o Should not have non-contiguous memory accesses
for (i=0; i<N; i+=2) Scalar_A[i] = Scalar_ B[i] + Scalar_ C[i];

15

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

● Data dependency (1/4)
o Read-After-Write (RAW) or Flow Dependency

§ Happens when a variable being written in one iteration is being read in
the next iterations

§ Unsafe for any type of parallel execution of loop iterations including
vectorization
• Imagine each iteration being executed simultaneously using separate cores

16

for (i=1; i<5; i++) {
A[i] = A[i-1] + 1;

}

A[1] = A[0] + 1
A[2] = A[1] + 1
A[3] = A[2] + 1
A[4] = A[3] + 1

Iterations i=2, 3 & 4 cannot
be executed simultaneously

inside a single vector

General Limitations of Vectorization (2/6)

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

● Data dependency (2/4)
o Write-After-Read (WAR) or Anti Dependency

§ Happens when a variable being read in one iteration is being written in
the next iterations

§ Unsafe for general parallel execution of loop iterations but totally safe
for vectorization
• During vectorization, iterations with higher value of “i” will complete only

after iterations with lower value of “i” have completed

17

for (i=1; i<5; i++) {
A[i-1] = A[i] + 1;

}

A[0] = A[1] + 1
A[1] = A[2] + 1
A[2] = A[3] + 1
A[3] = A[4] + 1

General Limitations of Vectorization (3/6)

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

● Data dependency (3/4)
o Write-After-Write (WAW) or Output Dependency

§ Happens when same variable is written in more than one iterations

§ Unsafe for any type of parallel execution of loop iterations including
vectorization

18

for (i=0; i<4; i++) {
A[i%2] = B[i] + C[i];

}

A[0] = B[0] + C[0]
A[1] = B[1] + C[1]
A[0] = B[2] + C[2]
A[1] = B[3] + C[3]

General Limitations of Vectorization (4/6)

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

● Data dependency (4/4)
o Read-After-Read (RAR)

§ Totally safe for both general parallelization and vectorization

19

for (i=0; i<4; i++) {
A[i] = B[i%2] + C[i];

}

A[0] = B[0] + C[0]
A[1] = B[1] + C[1]
A[2] = B[0] + C[2]
A[3] = B[1] + C[3]

General Limitations of Vectorization (5/6)

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

● Pointer aliasing
o Aliasing refers to a situation where two different expressions or

symbols refer to the same object
o Pointer aliasing may lead to data dependencies

20

void compute(int*A, int*B) {
for (i=1; i<5; i++) {

A[i] = B[i] + 1;
}

}
……
compute (A, A-1);

A[1] = A[0] + 1
A[2] = A[1] + 1
A[3] = A[2] + 1
A[4] = A[3] + 1

Pointer aliasing causing
Read-After-Write (RAW)

data dependency

General Limitations of Vectorization (6/6)

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

Amdahl's Law for Vectorized Code
● Linear speedup is

possible only for perfectly
parallel code

● The exact upper bound
depends significantly on
the percentage of code
that is vectorized
o At a vector width of 16,

code that is 60%
vectorized performs only
twice as fast as non-
vectorized code

● Sequential or scalar code
would limit the
performance
o What about memory

access pattern?

21

Picture source: https://cvw.cac.cornell.edu/vector/performance_amdahl

● Assume some work takes “W” time on a scalar CPU
● Time taken on a CPU with vector width “N” for total

vectorized fraction “f” available in that work
o Timescalar + Timevector => (1-f)W + fW/N

● Hence, maximum possible speedup
o W / {(1-f)W + fW/N} => 1 / { (1-f) + f/N }

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

Memory Access Pattern Affects Performance
● Moving data into and out

of vector registers involves
several levels of
the memory hierarchy

● Make use of temporal and
spatial locality for getting
best performance
o True for all kinds of

parallelization
o Avoid using bad loop stride

for vectorization

22

Picture source: https://cvw.cac.cornell.edu/vector/performance_memory

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

Today’s Class
● Flynn’s classification
● SIMD vector extensions
● SIMD programming techniques
● Limitations of vectorization
● Vector Class Library for SIMD programming

23

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

Programming using Vector Class Library (VCL)
● C++17 library for writing vector code without using

assembly language or compiler intrinsic
● Header only implementation, i.e., no installation required
● Programmer can use appropriate width vector class, and

compile with native compiler (GNU, Clang, Intel icc, etc.)
o Compiler flag used to specify the desired SIMD instruction set

(SSE4, AVX2, AVX512, etc.)
§ Must be supported by the processor

● Supported on Windows, Linux, and Mac, 32-bit and 64-bit,
with Intel, AMD, etc.

24

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

VCL Usage
1. Constructing vectors using

VCL
o Vec4i a;
o Vec4i a(5);
o Vec4i a = 6;
o Vec4i a(1, 4, 9, 0);
o Vec4i a

2. Loading data into vectors
o Vec4i a(0);

a.insert(/*index*/ 2, /*value*/ 9);
o Vec4i a;

a.load(array + index);
25

3. Getting data from vectors
o Vec4i a(1, 4, 9, 0); int array [SIZE]

a.store(array + index);
o Vec4i a(1, 4, 9, 0);

int element_index2 = a[2];
4. Arithmetic operations on vectors

o +, -, *, /, ++, +=, -=, *-, /=, /*many
more*/

5. Logical operations on vectors
o ==, !=, >, <, <=, >=, /*many more*/

6. Functions operating on single
vectors
o horizontal_add, horizontal_min,

horizontal_max, /*many more*/
7. Function operating on two vectors

o min, max, abs, /*many more*/

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

Vector Addition using VCL

26

int A[1024], B[1024], C[1024];

void sum() {
for (int i=0; i<1024; i++) {

A[i] = B[i] + C[i];
}

}

#include “vectorclass.h”
int A[1024], B[1024], C[1024];
void sum() {

Vec4i Av;

for (int i=0; i<1024; i+=4) {
Vec4i Bv = Vec4i().load(B+i);
Vec4i Cv = Vec4i().load(C+i);
Av = Bv + Cv;
Av.store(A+i);

}
}

128 bit vector

#include “vectorclass.h”
int A[1024], B[1024], C[1024];
void sum() {

Vec8i Av;

for (int i=0; i<1024; i+=8) {
Vec8i Bv = Vec8i().load(B+i);
Vec8i Cv = Vec8i().load(C+i);
Av = Bv + Cv;
Av.store(A+i);

}
}

256 bit vector

● VCL program compilation
g++ -std=c++17 -O3 -msse4 -fopt-info-vec -I/path_to/VCL/version2 sum.cpp

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

Performance Benefits using SIMD

0
4
8

12
16
20
24
28
32
36

Sequential and
Vectorized

Parallel and Not
Vectorized

Parallel and
Vectorized

27

● Four different variants of matrix
multiplication of size 1024x1024 of
floats
o Sequential (Baseline)
o Sequential but using vectorization with

Vec8f
o Recursive task parallel using Argolib but

without vectorization with Vec8f (20
threads)

o Recursive task parallel using Argolib
where leaf tasks are using vectorization
with Vec8f (20 threads)

● Two sockets of 10-core Intel Xeon
E5-2650 v3 processor

● GNU compiler 7.5.0 using -O3 and
SSE4 instruction set

● VCL version2 commit id 08959eb
● Ubuntu 16.04.7 LTS

Sp
ee

du
p

ov
er

 B
as
el
in
e

Code available in CSE513 GitHub repo:
https://github.com/hipec/cse513/blob/main/lec15/tests/par_matmul.cpp

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

Reference Materials
● Intel guide for auto vectorization

o https://www.intel.com/content/dam/www/public/us/en/documents/g
uides/compiler-auto-vectorization-guide.pdf

● Cornell virtual workshop for vectorization
o https://cvw.cac.cornell.edu/vector/

● VCL: Vector Class Library
o https://www.agner.org/optimize/vcl_manual.pdf
o https://github.com/vectorclass/version2

28

https://www.intel.com/content/dam/www/public/us/en/documents/guides/compiler-auto-vectorization-guide.pdf
https://cvw.cac.cornell.edu/vector/
https://www.agner.org/optimize/vcl_manual.pdf
https://github.com/vectorclass/version2

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

Next Lecture
● GPU programming

29

