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Today’s Class
● Flynn’s classification
● SIMD vector extensions
● SIMD programming techniques
● Limitations of vectorization
● Vector Class Library for SIMD programming
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Flynn’s Classification of Parallel Computer

2Source: https://computing.llnl.gov/tutorials/parallel_comp/
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Flynn’s Classification of Parallel Computer

3Source: https://computing.llnl.gov/tutorials/parallel_comp/

Single Instruction Single Data

Single Instruction Multiple Data

Multiple Instruction Single Data

Multiple Instruction Multiple Data

Vectors and GPUs

Multicore processing
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Exploiting Parallelism on Modern Processors
● Modern processors supports three different kinds of 

parallelism
o Instruction level parallelism

§ Done automatically by the hardware
o Thread (Task) level parallelism (multicore)

§ Achieved by the help of compiler/programmer
o Vector (Data) level parallelism

§ Achieved by the help of compiler (automatic) or programmer (manual)
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SIMD Vector Extensions
● What it is?

o Extension of the ISA
o Special registers that support instructions to 

operate upon vectors than scalar values 
§ Each core has its own SIMD execution units
§ Parallel computation on short (length 2, 4, 8..) 

vectors of integers or floats
o Names: SSE, SSE2, AVX, AVX2, AVX512, etc.

● What is their usage?
o Free data parallelism units capable of providing 

(theoretical) speedups equal to the vector width
§ Single instruction operates on multiple data 

elements simultaneously

● Where do they exists?
o On almost all modern processor, e.g., Intel & AMD
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Architectural Support for SIMD
● SIMD operation is 

supported on processors 
by adding more ALUs to 
each core, and by using 
wide registers (greater 
than 32 bit)
o Thanks to Moore’s law 

that small size 
transistors leave ample 
space for adding other 
functionalities

● Each CPU cycle can 
now operate on more 
than one 32-bit value

● Increasing vector 
register width require 
adding new instructions
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History of SIMD Vector Support in Intel Chips
Year 

Released
Name Register Width 

(BIT)
Width 
(Float)

1996 MMX (Multimedia Extension) 64 2

1999 SSE (Streaming SIMD Extension) 128 4

SSE2 128 4

SSE3 128 4

SSE4 128 4

2011 AVX (Advanced Vector Extensions) 256 8

AVX2 256 8

2013 AVX-512 512 16
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● Every new 
generation of 
SSE or AVX 
supports new 
and 
improved set 
of 
instructions

● Backward 
compatibility 
with every 
new 
generation

Source: https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
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Check Supported SIMD Instructions
● Use the following command to check the SIMD instructions supported by 

your processor
$ cat /proc/cpuinfo | grep flag | tail -1
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr
pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 
ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc
arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc
cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx
smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 
sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave
avx f16c rdrand lahf_lm abm cpuid_fault epb
invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi
flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2 smep
bmi2 erms invpcid xsaveopt dtherm ida arat pln pts 
md_clear flush_l1d
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SIMD Programming Techniques
● Applied either at compile time or link-time 

o Compiler based auto-vectorization
o Compiler pragmas (e.g., OpenMP simd)
o Calls to Vector Class Library (VCL)
o Hand coded compiler intrinsic
o Inline assembly code
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Easy to use, but low performance

Ninja Level, but best performance
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Compiler Perspective
● Vectorization is similar to loop unrolling

o Unroll by “N” iterations, where “N” is vector width
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for (i=0; i<N; i++) {
c[i] = a[i] + b[i];

}

for (i=0; i<N; i+=4) {
c[i+0] = a[i+0] + b[i+0];
c[i+1] = a[i+1] + b[i+1];
c[i+2] = a[i+2] + b[i+2];
c[i+3] = a[i+3] + b[i+3];

}

for (i=0; i<N; i+=4) {
Load a[i+0 : i+3] in v0;
Load b[i+0 : i+3] in v1;
v0 = v1 + v0;
Store v0 in c[i+0 : i+3];

}

Vector width 
= 128 bit

● How to inform the compiler for using vectorization?
o Intel compiler starts vectorization with -O2 optimization flag
o GCC compiler starts vectorization with -O3 optimization flag
o By default, both compilers use SSE instructions and 128 bit vector width
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Limitations of Auto-Vectorization
● Loop iterations should not have different control flow

o ”if” or “switch” statements cannot be used for selective calculation of 
data elements
§ Although, ”if” or “switch” statements may be used as masked 

statements, i.e., calculation is performed for all elements, but result is 
stored selectively

for (i=0; i<N; i++) { int s = B[i] + C[i]; if (s>10) A[i] = s; else A[i] = 0; }

● Loop iterations should be independent, e.g., a[b[i]] not 
allowed

● Loop should only use basic math functions, e.g., pow, sqrt,..

14
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General Limitations of Vectorization (1/6)
● General restrictions for vectorization, that applies to both 

compiler-based auto-vectorization, as well as manual 
vectorization
o Loop size should be countable at runtime

§ Loop size not required during compile time, but it should not change 
during execution (runtime)
• Implies single entry and single exit for the loop (no break statements)

o Only a single arithmetic type operation, e.g., cannot intermix “+”, “x”, 
“-”, etc. within a vector operation

o Should not have non-contiguous memory accesses
for (i=0; i<N; i+=2) Scalar_A[i] = Scalar_ B[i] + Scalar_ C[i];

15
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● Data dependency (1/4)
o Read-After-Write (RAW) or Flow Dependency

§ Happens when a variable being written in one iteration is being read in 
the next iterations

§ Unsafe for any type of parallel execution of loop iterations including 
vectorization
• Imagine each iteration being executed simultaneously using separate cores
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for (i=1; i<5; i++) {
A[i] = A[i-1] + 1;

}

A[1] = A[0] + 1
A[2] = A[1] + 1
A[3] = A[2] + 1
A[4] = A[3] + 1

Iterations i=2, 3 & 4 cannot 
be executed simultaneously 

inside a single vector

General Limitations of Vectorization (2/6)
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● Data dependency (2/4)
o Write-After-Read (WAR) or Anti Dependency

§ Happens when a variable being read in one iteration is being written in 
the next iterations

§ Unsafe for general parallel execution of loop iterations but totally safe 
for vectorization
• During vectorization, iterations with higher value of “i” will complete only 

after iterations with lower value of “i” have completed

17

for (i=1; i<5; i++) {
A[i-1] = A[i] + 1;

}

A[0] = A[1] + 1
A[1] = A[2] + 1
A[2] = A[3] + 1
A[3] = A[4] + 1

General Limitations of Vectorization (3/6)



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

● Data dependency (3/4)
o Write-After-Write (WAW) or Output Dependency

§ Happens when same variable is written in more than one iterations

§ Unsafe for any type of parallel execution of loop iterations including 
vectorization

18

for (i=0; i<4; i++) {
A[i%2] = B[i] + C[i];

}

A[0] = B[0] + C[0]
A[1] = B[1] + C[1]
A[0] = B[2] + C[2]
A[1] = B[3] + C[3]

General Limitations of Vectorization (4/6)
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● Data dependency (4/4)
o Read-After-Read (RAR) 

§ Totally safe for both general parallelization and vectorization

19

for (i=0; i<4; i++) {
A[i] = B[i%2] + C[i];

}

A[0] = B[0] + C[0]
A[1] = B[1] + C[1]
A[2] = B[0] + C[2]
A[3] = B[1] + C[3]

General Limitations of Vectorization (5/6)



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 15: Parallel Programming using SIMD Vector Units

● Pointer aliasing
o Aliasing refers to a situation where two different expressions or 

symbols refer to the same object
o Pointer aliasing may lead to data dependencies
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void compute(int*A, int*B) {
for (i=1; i<5; i++) {

A[i] = B[i] + 1;
}

}
……
compute (A, A-1);

A[1] = A[0] + 1
A[2] = A[1] + 1
A[3] = A[2] + 1
A[4] = A[3] + 1

Pointer aliasing causing 
Read-After-Write (RAW) 

data dependency

General Limitations of Vectorization (6/6)
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Amdahl's Law for Vectorized Code
● Linear speedup is 

possible only for perfectly 
parallel code

● The exact upper bound 
depends significantly on 
the percentage of code 
that is vectorized 
o At a vector width of 16, 

code that is 60% 
vectorized performs only 
twice as fast as non-
vectorized code

● Sequential or scalar code 
would limit the 
performance
o What about memory 

access pattern?

21

Picture source: https://cvw.cac.cornell.edu/vector/performance_amdahl

● Assume some work takes “W” time on a scalar CPU
● Time taken on a CPU with vector width “N” for total 

vectorized fraction “f” available in that work
o Timescalar + Timevector => (1-f)W + fW/N

● Hence, maximum possible speedup
o W / {(1-f)W + fW/N} => 1 / { (1-f) + f/N }
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Memory Access Pattern Affects Performance
● Moving data into and out 

of vector registers involves 
several levels of 
the memory hierarchy

● Make use of temporal and 
spatial locality for getting 
best performance
o True for all kinds of 

parallelization
o Avoid using bad loop stride 

for vectorization 
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Picture source: https://cvw.cac.cornell.edu/vector/performance_memory
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Programming using Vector Class Library (VCL)
● C++17 library for writing vector code without using 

assembly language or compiler intrinsic
● Header only implementation, i.e., no installation required
● Programmer can use appropriate width vector class, and 

compile with native compiler (GNU, Clang, Intel icc, etc.)
o Compiler flag used to specify the desired SIMD instruction set 

(SSE4, AVX2, AVX512, etc.)
§ Must be supported by the processor

● Supported on Windows, Linux, and Mac, 32-bit and 64-bit, 
with Intel, AMD, etc.

24
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VCL Usage
1. Constructing vectors using 

VCL
o Vec4i a;
o Vec4i a(5);
o Vec4i a = 6;
o Vec4i a(1, 4, 9, 0);
o Vec4i a

2. Loading data into vectors
o Vec4i a(0);    

a.insert(/*index*/ 2, /*value*/ 9);
o Vec4i a;    

a.load(array + index);
25

3. Getting data from vectors
o Vec4i a(1, 4, 9, 0);    int array [SIZE]    

a.store(array + index);
o Vec4i a(1, 4, 9, 0);    

int element_index2 = a[2];
4. Arithmetic operations on vectors

o +, -, *, /, ++, +=, -=, *-, /=, /*many 
more*/

5. Logical operations on vectors
o ==, !=, >, <, <=, >=, /*many more*/

6. Functions operating on single 
vectors
o horizontal_add, horizontal_min, 

horizontal_max, /*many more*/
7. Function operating on two vectors

o min, max, abs, /*many more*/
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Vector Addition using VCL

26

int A[1024], B[1024], C[1024];

void sum() {
for (int i=0; i<1024; i++) {

A[i] = B[i] + C[i];
}

}

#include “vectorclass.h”
int A[1024], B[1024], C[1024];
void sum() {

Vec4i Av;

for (int i=0; i<1024; i+=4) {
Vec4i Bv = Vec4i().load(B+i);
Vec4i Cv = Vec4i().load(C+i);
Av = Bv + Cv;
Av.store(A+i);

}
}

128 bit vector

#include “vectorclass.h”
int A[1024], B[1024], C[1024];
void sum() {

Vec8i Av;

for (int i=0; i<1024; i+=8) {
Vec8i Bv = Vec8i().load(B+i);
Vec8i Cv = Vec8i().load(C+i);
Av = Bv + Cv;
Av.store(A+i);

}
}

256 bit vector

● VCL program compilation
g++ -std=c++17 -O3 -msse4 -fopt-info-vec -I/path_to/VCL/version2 sum.cpp
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Performance Benefits using SIMD 
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● Four different variants of matrix 
multiplication of size 1024x1024 of 
floats
o Sequential (Baseline)
o Sequential but using vectorization with 

Vec8f
o Recursive task parallel using Argolib but 

without vectorization  with Vec8f (20 
threads)

o Recursive task parallel using Argolib
where leaf tasks are using vectorization 
with Vec8f (20 threads)

● Two sockets of 10-core Intel Xeon 
E5-2650 v3 processor

● GNU compiler 7.5.0 using -O3 and 
SSE4 instruction set

● VCL version2 commit id 08959eb
● Ubuntu 16.04.7 LTS
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Code available in CSE513 GitHub repo: 
https://github.com/hipec/cse513/blob/main/lec15/tests/par_matmul.cpp
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Reference Materials
● Intel guide for auto vectorization

o https://www.intel.com/content/dam/www/public/us/en/documents/g
uides/compiler-auto-vectorization-guide.pdf

● Cornell virtual workshop for vectorization
o https://cvw.cac.cornell.edu/vector/

● VCL: Vector Class Library
o https://www.agner.org/optimize/vcl_manual.pdf
o https://github.com/vectorclass/version2
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Next Lecture
● GPU programming

29


