Lecture 16: Introduction to GPU
Computing

Vivek Kumar
Computer Science and Engineering
IIIT Delhi
vivekk@iiitd.ac.in

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

Last Lecture (Recap)

® SIMD vector extensions

o Special registers at each core that support
instructions to operate upon vectors values

® Limitations
Loop size should be countable at runtime
Loop iterations should not have different control flow
Loop iterations should be independent
Loop should only use basic math functions
Only a single arithmetic type operation
Should not have non-contiguous memory accesses
Unsupported data-dependencies
. Read-After-Write: A[i] = A[i-1] + 1
. Write-After-Write: A[i%2] = BJi] + CJi]
o Supported data-dependencies
. Write-After-Write: A[i-1] = A[i] + 1
= Read-After-Read: Ali] = B[i%2] + Ci]

O O O O O O O

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Vector
(N operations)
Scalar
(1 operation)
addr3,r1, r2
add.vv v3, v1, v2

#tinclude “vectorclass.h”
int A[1024], B[1024], C[1024];
void sum() {

Vec8i Av;

for (int i=0; i<1024; i+=8) {
Vec8i Bv = Vec8i().load(B+i);
Vec8i Cv = Vec8i().load(C+i);

Av = Bv + Cv;
Av.store(A+i);

}
}

7

1

LT
Today’s Class

=>® GPU architecture
® GPU programming

This lecture will give you a high-level overview of GPU
architecture and a platform-neutral high-level library-based
programming model for writing GPU programs that can
compile with standard C++ compilers

D

Lecture 16: Introduction to GPU Computing

Multicore CPUs with SIMD Support

® Multicore processors are latency oriented!

o How?
DRAM ® Modern multicore processors have sophisticated
e — cores to support general purpose computing
o High core frequency for low latency operations
Ao | o Large cache and prefetcher unit for improving
Thread Thread memory acCess IatenCy
. Dynamically decide future memory accesses based on
% % current access pattern to reduce CPU stalls

o Superscalar capabilities allowing it to use Instruction
Level Parallelism (ILP)

® They also support data parallel execution

o Each physical core has bunch of ALUs and wide
vector registers for SIMD operations

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 3

CPU Stalls in SIMD Execution

for (int i=0; i<1024; i+=4) { for (int i=1024; i<2048; i+=4) {
Vec_Ai = func (Vec_Bi, Vec_Ci); Vec_Ai = func (Vec_Bi, Vec_Ci);

A

How to reduce these stalls?

CPU Stalls

T []

Time

CPU Stalls

e
e

Instructions being executed require very few cycles than the
cycles required for fetching memory, thereby leading to CPU stalls

D

DRAM

Cache

Cache

ALU| |ALU

ALU| |ALU

ALU| |ALU| |ALU| [ALU

Thread
State

Thread
State

Thread || Thread
State State

Lecture 16: Introduction to GPU Computing

Using SMT for Hiding Stalls

® Two-way SMT at each multicore
(Simultaneous Multithreading)

O

E CSE513: Parallel Runtimes for Modern Processors

Each SMT core has its own PC register,
thereby allowing each core to simultaneously

execute a completely different execution
stream

Each SMT core has its own set of vector
registers

Each SMT core pair share ALUs

Each SMT core pair can execute different set
of SIMD operations (as they don’t share PC
register)

© Vivek Kumar

CPU Stalls in SIMD Execution

® Using SMT for hiding stalls

T

v

for (inti=0; i<512; i+=4) {
Vec_Ai = func (Vec_Bi, Vec_Ci);
Thread-1

—

for (inti=512; i<1024; i+=4) {
Vec_Ai = func (Vec_Bi, Vec_Ci);
} Thread-2

for (inti=1024; i<1536; i+=4) {
Vec_Ai = func (Vec_Bi, Vec_Ci);
} Thread-3

for (int i=1536; i<2048; i+=4) {
Vec_Ai = func (Vec_Bi, Vec_Ci);
} Thread-4

CPU Stall‘

]
!

CPU Stall‘

EEEE

o Thread-1 on Core-1 and Thread-3 on Core-2 completes the first iteration, and then stalls for memory fetch
o Thread-2 on Caore-1 and Thread-4 on Core-2 memary fetch has completed, hence they start their first

iteration while Thread-1 and Thread-3 are blocked for memory fetch

o Key idea here is to increase the number of hardware threads for hiding CPU stalls

D

S twwmowcinooUCmewns
How to Further Optimize SIMD Execution?

® Increase the number of hardware threads
supported on each core

 orm o CPU stalls are significantly reduced
o Improves the performance as the hardware
_ _

schedule the threads instead of the OS
® Improve the memory bandwidth
EEE% %%IE o ﬁs_largfetcrr:ugllgs of r[r)lgrxlc\)ﬂryaadgtlrelsses are .
EEEE EEEE cohocyeromoraioeolsenme
55%% éégé ® But, won't these enhancements increase the
compIeX|ty and cost of the multicore
processor?

1D

Lecture 16: Introduction to GPU Computing

How to Design a Processor for SIMD?

® If we only have to run SIMD a?hplications on a processor, then how

to cut down the complexity of

O
O

O

O

e processor?

Reduce core frequency and increase the number of cores
Support large number of hardware threads at each core

» Requires a large amount of data, but stalls are hidden due to large number
of threads

Cores have smaller cache

= Large number of threads {)er core would operate on large amount of data,
thereby requiring frequent DRAM accesses

Increase the number of ALUs per core and the width of SIMD registers
Group of threads could share a single PC register

= Single Instruction Multiple Thread (SIMT)

= Shared instruction cache

Support high bandwidth data transfer

This is the design of a throughput oriented processor or a GPU

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Mechanical Equivalent of a GPU

GPU

SIMT cores

Data

Slide credit: https://web.engr.oregonstate.edu/~mjb/cs575/Handouts/gpu101.1pp.pdf
E CSE513: Parallel Runtimes for Modern Processors

10

Intel GPU Architecture

- ® Execution Unit (EU) is the smallest
ek W building block (same as a core in the
4'1 CPU)
= | - o o Operates at MHz level instead of GHz

o Each EU supports 7-way SMT
o Supports one 8-wide SIMD operation

® Each slice contains 6 subslice
o 16 EUs at each subslice

e o Total FP32 SIMD operations per slice
per cycle are 7x8x16x6 (=5376)

—— e Intel supports multiple slices in GPU

Intel’s Iris® Xe single Slice

Source: https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top/xe-arch.htmi

[E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

NVIDIA GPU Architecture

CUDA-core is the smallest building
block (akin to EU in Intel)
o Operates at 1126 MHz

o Each CUDA-core can process 32
data elements (FP 32) simultaneously
(warps). Similar to 32-wide vector
operation

= Warp has a common PC (SIMT)

® Each SM (akin to subslice in Intel)
has 32x2 CUDA-cores

o An SM can operate on 64 warps, i.e.,
each SM can process 32x64 FP32
data elements simultaneously

® GP100 has 56 SMs per GPU

o Total FP32 that can be processed
Pascal GP100 single SM (Streaming Multiprocessor) simultaneously are 32x64x56

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 11

LT
Today’s Class

® GPU architecture
=>e@ GPU programming

D

Lecture 16: Introduction to GPU Computing

GPU Programming Template

Setup inputs on the host CPU
Allocate memory on the host CPU
Allocate memory on the GPU
Copy inputs from the host to GPU
Start GPU kernel

Copy output from the GPU to host

S A

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

13

e
GPU Programming Model

® \endor supported programming model
o CUDA on NVIDIA GPUs
o oneAPIl on Intel GPUs
o Provides high performance
o Cannot compile with standard compilers (lacks portability)

® OpenCL is vendor neutral

o Does not require any special compiler or compiler extensions

= Works with standard C/C++ compiler
o Provides direct access to underlying hardware (CPU, GPU, FPGA)
o High portability

= Same program can run on multiple device types

Although, performance may not be optimal without device specific tuning

o Requires some serious effort for writing OpenCL programs

1P

Lecture 16: Introduction to GPU Computing

OpenCL Platform Model

—

HOST

[l
I]I]”ﬁ

N

Compute unit

\ Processing element

E CSE513: Parallel Runtimes for Modern Processors

® One hostis connected to one or more

OpenCL compute devices

o Compute device is a processor (e.g.,
multicore processor or GPU)

Each compute device is composed of
one or more compute units (a.k.a. work
groups)

o Compute unit is analogous to a “core” in

multicore processor, or SIMD vector
register in CPU, or CUDA-core in a GPU

Each compute unit is divided into one
or more processing elements (a.k.a.
work items)

o Processing element is analogous to an
thread that execute code as SIMD

© Vivek Kumar 15

Lecture 16: Introduction to GPU Computing

OpenCL Memory Model

- . : : Private
o Private Memory Privte [Private Memes Memory
—Per work-item

e Local Memory

—Shared within a workgroup | lowliMemoy |

Work-Item Work-Item Work-Item Work-Item

Workgroup Workgroup
—-Visible to all workgroups [cobalonsntMemoy |

, e Host Memory Compute Device
wa

> -On the CPU
OS Host Memory
zO
O Memory management is Explicit
S You must move data from host -> global -> local ... and back
-
at

© Copyright Khronos Group, 2012 - Page 2
E CSE513: Parallel Runtimes for Modern Processors 16

OpenCL Execution Model

e OpenCL application runs on a host which
submits work to the compute devices

- Context: The environment within which
work-items executes ... includes devices and
their memories and command queues

- Program: Collection of kernels and other
functions (Analogous to a dynamic library)

- Kernel: the code for a work item.
Basically a C function

- Work item: the basic unit of work on an
OpenCL device

* Applications queue kernel execution
- Executed in-order or out-of-order

~ Context

 Queue Queue

Allows independent kernels to execute simultaneously

whenever possible, and thus keeps the GPU fully utilized

© Copyright Khronos Group, 2012 - Page 3

Executing OpenCL Programs

1. Query host for OpenCL devices Similar to GPU programming

template listed in Slide #13

2. Create a context to associate OpenCL devices

3. Create programs for execution on one or more
associated devices

4. Select kernels to execute from the programs
5. Create memory objects accessible from the m

host and/or the device

i Programs Kernels Memory Command
6. Copy memory data to the device as needed Objects Queue

»: | 7. Provide kernels to command queue for . |

O execution : ermel0 || [mames ﬂ j

Z° | 8. Copy results from the device to the host programs || | [LXemelt || [

O it)l o
N

“ > Create data & arguments >§)?engu\;gn

» vV

-

© Copyright Khronos Group 2013 - Page 9

1P

Lecture 16: Introduction to GPU Computing

OpenCL Kernel Example

void vector_addition(float* A, float* B,
float* C, int size) {
for (int i=0; i<size; i++) {
C[i] = A[i] + B[i];
}

}
Using C/C++ in traditional way &7

=

}

kernel void vector_addition(__global float* A, _ global float* B,
__global float* C) {

int i = get_global_id(@);

C[i] = A[i] + B[i];

Using OpenCL data parallel loop

® \ector addition using OpenCL

o The complete OpenCL program to compute vector addition could
span to around 143 lines of low-level code as compared to the
few lines of simple code in the traditional C/C++ program

= See: https://www.olcf.ornl.gov/tutorials/opencl-vector-addition/

= Low productivity!

E CSE513: Parallel Runtimes for Modern Processors

© Vivek Kumar 19

https://www.olcf.ornl.gov/tutorials/opencl-vector-addition/

Lecture 16: Introduction to GPU Computing

Boost.Compute for GPU Computing

® A header-only C++ library for GPU computing

o Easy to use GPU programming APIs > High Productivity!
o Provides a thin C++ wrapper over OpenCL APIs

o Works with standard C++ compilers
O

Provides several ready-to-use optimized kernel implementations (e.g.,
binary_search, reduce, sort_by key, etc.)

o (S:LIijUports varieties of GPUs (Intel, NVIDIA, and AMD), as well as
S

® Caches OpenCL programs
o Each OpenCL program (kernel) requires compilation and incurs overheads

o Boost.compute stores frequently used kernels in a global cache
» Reduces overheads by avoiding multiple compilation for the same kernel

® May not match the performance of nativeIY sup&orted GPU _
programming model (e.g., CUDA on a NVIDIA GPU) without tuning

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

20

Lecture 16: Introduction to GPU Computing

Vector Addition using Boost.Compute

® Demo of the program available in the course GitHub repository
o https://qgithub.com/hipec/cse513/blob/main/lec16/tests/vecadd.cpp

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 21

https://github.com/hipec/cse513/blob/main/lec16/tests/vecadd.cpp

o teweoseeomas
Reading Materials

® OpenCL

o https://sites.google.com/site/csc8820/opencl-basics/opencl-
concepts#TOC-Kernel-and-compute-kernel

o https://www.khronos.org/assets/uploads/developers/library/2012-
pan-pacific-road-show-June/OpenCL-Details-Taiwan June-
2012 .pdf

® Boost.Compute

o https://www.boost.org/doc/libs/1 80 0/libs/compute/doc/html/index
html#boost compute.introduction

1P

https://www.khronos.org/assets/uploads/developers/library/2012-pan-pacific-road-show-June/OpenCL-Details-Taiwan_June-2012.pdf
https://www.khronos.org/assets/uploads/developers/library/2012-pan-pacific-road-show-June/OpenCL-Details-Taiwan_June-2012.pdf
https://www.boost.org/doc/libs/1_80_0/libs/compute/doc/html/index.html

o leweweadoeoromuie
Next Lecture

® Heterogeneous parallel programming

® Quiz-3 on Nov 11th
o Syllabus: Lectures 15-17

D

