
CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU 
Computing

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

Last Lecture (Recap)
● SIMD vector extensions

o Special registers at each core that support 
instructions to operate upon vectors values

● Limitations
o Loop size should be countable at runtime
o Loop iterations should not have different control flow
o Loop iterations should be independent
o Loop should only use basic math functions
o Only a single arithmetic type operation
o Should not have non-contiguous memory accesses
o Unsupported data-dependencies

§ Read-After-Write: A[i] = A[i-1] + 1
§ Write-After-Write: A[i%2] = B[i] + C[i]

o Supported data-dependencies
§ Write-After-Write: A[i-1] = A[i] + 1
§ Read-After-Read: A[i] = B[i%2] + C[i]

1

#include “vectorclass.h”
int A[1024], B[1024], C[1024];
void sum() {

Vec8i Av;

for (int i=0; i<1024; i+=8) {
Vec8i Bv = Vec8i().load(B+i);
Vec8i Cv = Vec8i().load(C+i);
Av = Bv + Cv;
Av.store(A+i);

}
}



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

Today’s Class
● GPU architecture
● GPU programming

This lecture will give you a high-level overview of GPU
architecture and a platform-neutral high-level library-based
programming model for writing GPU programs that can
compile with standard C++ compilers

2



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

Multicore CPUs with SIMD Support

3

● Multicore processors are latency oriented!
o How?

● Modern multicore processors have sophisticated 
cores to support general purpose computing
o High core frequency for low latency operations
o Large cache and prefetcher unit for improving 

memory access latency
§ Dynamically decide future memory accesses based on 

current access pattern to reduce CPU stalls
o Superscalar capabilities allowing it to use Instruction 

Level Parallelism (ILP)
● They also support data parallel execution

o Each physical core has bunch of ALUs and wide 
vector registers for SIMD operations

DRAM

ALU ALU ALU ALU

Thread 
State

Cache

ALU ALU ALU ALU

Thread 
State

Cache

PC PC



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

CPU Stalls in SIMD Execution

4

for (int i=0; i<1024; i+=4) {

Vec_Ai = func (Vec_Bi, Vec_Ci);

} Thread-1DRAM

ALU ALU ALU ALU

Thread 
State

Cache

ALU ALU ALU ALU

Thread 
State

Cache

PC PC

for (int i=1024; i<2048; i+=4) {

Vec_Ai = func (Vec_Bi, Vec_Ci);

} Thread-2

Ti
m

e

i1024 i1025 i1026 i1027i0 i1 i2 i3

i1028 i1029 i1030 i1031i4 i5 i6 i7

i1032 i1033 i1034 i1035i8 i9 i10 i11

CPU Stalls 

CPU Stalls

Instructions being executed require very few cycles than the 
cycles required for fetching memory, thereby leading to CPU stalls

How to reduce these stalls?



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

Using SMT for Hiding Stalls

5

● Two-way SMT at each multicore 
(Simultaneous Multithreading)
o Each SMT core has its own PC register, 

thereby allowing each core to simultaneously 
execute a completely different execution 
stream

o Each SMT core has its own set of vector 
registers

o Each SMT core pair share ALUs
o Each SMT core pair can execute different set 

of SIMD operations (as they don’t share PC 
register)

DRAM

ALU ALU ALU ALU

Thread 
State

Thread 
State

Cache

ALU ALU ALU ALU

Thread 
State

Thread 
State

Cache

PC PC PC PC



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

CPU Stalls in SIMD Execution

6

Ti
m

e

DRAM

ALU ALU ALU ALU

Thread 
State

Thread 
State

Cache

ALU ALU ALU ALU

Thread 
State

Thread 
State

Cache

PC PC PC PC

i0 i1 i2 i3

i512 i513 i514 i514

i1024 i1025 i1026 i1027

i1536 i1537 i1538 i1539

i4 i5 i6 i7 i1028 i1029 i1030 i1031

i515 i516 i517 i518 i1540 i1541 i1542 i1543

i8 i9 i10 i11 i1032 i1033 i1034 i1035

i519 i520 i521 i522 i1544 i1545 i1546 i1547

CPU Stall CPU Stall 

● Using SMT for hiding stalls
o Thread-1 on Core-1 and Thread-3 on Core-2 completes the first iteration, and then stalls for memory fetch
o Thread-2 on Core-1 and Thread-4 on Core-2 memory fetch has completed, hence they start their first 

iteration while Thread-1 and Thread-3 are blocked for memory fetch
o Key idea here is to increase the number of hardware threads for hiding CPU stalls



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

How to Further Optimize SIMD Execution?
● Increase the number of hardware threads 

supported on each core
o CPU stalls are significantly reduced
o Improves the performance as the hardware 

schedule the threads instead of the OS
● Improve the memory bandwidth

o As large chunks of memory addresses are 
being fetched from DRAM due to large number 
of threads

● But, won’t these enhancements increase the 
complexity and cost of the multicore 
processor?

7

DRAM

ALU ALU ALU ALU

Cache

ALU ALU ALU ALU

Cache



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

How to Design a Processor for SIMD?
● If we only have to run SIMD applications on a processor, then how 

to cut down the complexity of the processor?
o Reduce core frequency and increase the number of cores
o Support large number of hardware threads at each core

§ Requires a large amount of data, but stalls are hidden due to large number 
of threads

o Cores have smaller cache
§ Large number of threads per core would operate on large amount of data, 

thereby requiring frequent DRAM accesses
o Increase the number of ALUs per core and the width of SIMD registers
o Group of threads could share a single PC register

§ Single Instruction Multiple Thread (SIMT) 
§ Shared instruction cache

o Support high bandwidth data transfer

8

This is the design of a throughput oriented processor or a GPU



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

9

Mechanical Equivalent of a GPU

Slide credit: https://web.engr.oregonstate.edu/~mjb/cs575/Handouts/gpu101.1pp.pdf

GPU

SIMT cores

Data



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

10

Intel GPU Architecture
●Execution Unit (EU) is the smallest 

building block (same as a core in the 
CPU)
o Operates at MHz level instead of GHz
o Each EU supports 7-way SMT
o Supports one 8-wide SIMD operation

●Each slice contains 6 subslice
o 16 EUs at each subslice
o Total FP32 SIMD operations per slice 

per cycle are 7x8x16x6 (=5376)
● Intel supports multiple slices in GPU

Source: https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top/xe-arch.html

Intel’s Iris® Xe single Slice



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

NVIDIA GPU Architecture

11

Pascal GP100 single SM (Streaming Multiprocessor)

● CUDA-core is the smallest building 
block (akin to EU in Intel)
o Operates at 1126 MHz
o Each CUDA-core can process 32 

data elements (FP 32) simultaneously 
(warps). Similar to 32-wide vector 
operation
§ Warp has a common PC (SIMT)

● Each SM (akin to subslice in Intel) 
has 32x2 CUDA-cores
o An SM can operate on 64 warps, i.e., 

each SM can process 32x64 FP32 
data elements simultaneously

● GP100 has 56 SMs per GPU
o Total FP32 that can be processed 

simultaneously are 32x64x56



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

Today’s Class
● GPU architecture
● GPU programming

12



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

GPU Programming Template
1. Setup inputs on the host CPU
2. Allocate memory on the host CPU
3. Allocate memory on the GPU
4. Copy inputs from the host to GPU
5. Start GPU kernel
6. Copy output from the GPU to host

13



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

GPU Programming Model
● Vendor supported programming model

o CUDA on NVIDIA GPUs
o oneAPI on Intel GPUs
o Provides high performance
o Cannot compile with standard compilers (lacks portability)

● OpenCL is vendor neutral
o Does not require any special compiler or compiler extensions

§ Works with standard C/C++ compiler
o Provides direct access to underlying hardware (CPU, GPU, FPGA)
o High portability

§ Same program can run on multiple device types
• Although, performance may not be optimal without device specific tuning

o Requires some serious effort for writing OpenCL programs

14



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

OpenCL Platform Model
● One host is connected to one or more 

OpenCL compute devices
o Compute device is a processor (e.g., 

multicore processor or GPU)
● Each compute device is composed of 

one or more compute units (a.k.a. work 
groups)
o Compute unit is analogous to a “core” in 

multicore processor, or SIMD vector 
register in CPU, or CUDA-core in a GPU

● Each compute unit is divided into one 
or more processing elements (a.k.a. 
work items)
o Processing element is analogous to an 

thread that execute code as SIMD

15

HOST

Compute device 1
Compute device 2

Compute device 3
Compute unit

Processing element



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

16



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

17

Allows independent kernels to execute simultaneously 
whenever possible, and thus keeps the GPU fully utilized



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

18

Similar to GPU programming 
template listed in Slide #13



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

OpenCL Kernel Example

● Vector addition using OpenCL
o The complete OpenCL program to compute vector addition could 

span to around 143 lines of low-level code as compared to the 
few lines of simple code in the traditional C/C++ program
§ See: https://www.olcf.ornl.gov/tutorials/opencl-vector-addition/
§ Low productivity!

19

void vector_addition(float* A, float* B, 
float* C, int size) {

for (int i=0; i<size; i++) {
C[i] = A[i] + B[i];

}
}

Using C/C++ in traditional way

__kernel void vector_addition(__global float* A, __global float* B, 
__global float* C) {

int i = get_global_id(0);
C[i] = A[i] + B[i];

}

Using OpenCL data parallel loop

https://www.olcf.ornl.gov/tutorials/opencl-vector-addition/


CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

Boost.Compute for GPU Computing
● A header-only C++ library for GPU computing

o Easy to use GPU programming APIs à High Productivity!
o Provides a thin C++ wrapper over OpenCL APIs
o Works with standard C++ compilers
o Provides several ready-to-use optimized kernel implementations (e.g., 

binary_search, reduce, sort_by_key, etc.)
● Supports varieties of GPUs (Intel, NVIDIA, and AMD), as well as 

CPUs
● Caches OpenCL programs

o Each OpenCL program (kernel) requires compilation and incurs overheads
o Boost.compute stores frequently used kernels in a global cache

§ Reduces overheads by avoiding multiple compilation for the same kernel

● May not match the performance of natively supported GPU 
programming model (e.g., CUDA on a NVIDIA GPU) without tuning

20



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

Vector Addition using Boost.Compute
● Demo of the program available in the course GitHub repository

o https://github.com/hipec/cse513/blob/main/lec16/tests/vecadd.cpp

21

https://github.com/hipec/cse513/blob/main/lec16/tests/vecadd.cpp


CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

Reading Materials
● OpenCL

o https://sites.google.com/site/csc8820/opencl-basics/opencl-
concepts#TOC-Kernel-and-compute-kernel

o https://www.khronos.org/assets/uploads/developers/library/2012-
pan-pacific-road-show-June/OpenCL-Details-Taiwan_June-
2012.pdf

● Boost.Compute
o https://www.boost.org/doc/libs/1_80_0/libs/compute/doc/html/index

.html#boost_compute.introduction

22

https://www.khronos.org/assets/uploads/developers/library/2012-pan-pacific-road-show-June/OpenCL-Details-Taiwan_June-2012.pdf
https://www.khronos.org/assets/uploads/developers/library/2012-pan-pacific-road-show-June/OpenCL-Details-Taiwan_June-2012.pdf
https://www.boost.org/doc/libs/1_80_0/libs/compute/doc/html/index.html


CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 16: Introduction to GPU Computing

Next Lecture
● Heterogeneous parallel programming
● Quiz-3 on Nov 11th

o Syllabus: Lectures 15-17

23


