
CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous
Parallel Programming

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

Last Lecture (Recap)
● Multicore processors are latency

oriented, whereas GPUs are throughput
oriented

1

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

Today’s Class
● Amdahl's law revisited
● Integrated CPU-GPU architectures
● Runtime solution for hybrid CPU-GPU parallelism

2

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

Amdahl's Law Revisited
● Recall, maximum possible speedup for a program having

fraction “f” of its total execution “W” parallelizable on N
processing resources
o Speedup(f, N) = TSequential / (TSequential + TParallel) = W / {(1-f)W + fW/N}
o Speedup(f, N) = 1 / { (1-f) + f/N }

● The assumption is that there is uniform scalability of
processing resources when using more processors

3

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

Amdahl's Law Revisited (Symmetric Cores)
● Examples of different possible multicore processors that

are using the same number of total processing resources
o Each processor has identical cores (symmetric processor)
o Each processor is using the same number of resources (N=16)

§ E.g., N could be total number of transistors on a processor
o Each core is consuming R number of these resources

§ Hence, cores per processor is N/R

4

Given a choice,
which of these
processors you
would buy for
your system?

Hill and Marty 2008

R=16
R=8

R=8

4 4

4 4

2 2
2 2
2 2
2 2

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

Amdahl's Law Revisited (Symmetric Cores)
● Serial fraction of the program would now have a single core

(sequential) performance on these combinations as:
o (1-f) / PerfR

§ PerfR is the performance of each of the single core of the processor type
R shown below

● Parallel fraction use N/R cores at the rate Perf(R) each
o f / (Perf(R) * (N/R)) = f*R / Perf(R)*N

● Speedup(f, R, N) = 1 / ({(1-f)/Perf(R)} + {f*R/(Perf(R)*N)})

5
Hill and Marty 2008

R=16
R=8

R=8

4 4

4 4

2 2
2 2
2 2
2 2

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

Amdahl's Law Revisited (Symmetric Cores)
● Symmetric multicore processor with total resources N=16. Perf(R) approximated as

square root of R (adding resources won’t give linear performance – Why?)
o Speedup(f, R, 16) = 1 / ({(1-f)/Perf(R)} + {f*R/(Perf(R)*16)})

6
Hill and Marty 2008

0
2
4
6
8

10
12
14
16
18

R=1
Cores=16

R=2
Cores=8

R=4
Cores=4

R=8
Cores=2

R=16
Cores=1

f=0.001 f=0.50 f=0.9 f=0.999

Sp
ee

du
p

● At f=0.5, single core speedup
better than 16 cores
o Code should have parallelism for

taking the benefit of multicores
● f=0.999 achieves far better

speedup than f=0.9 using
same 16 cores
o “f” matters – Need to have as

much parallelism as possible
● Any value of “f” achieves

same speedup using R-16, C-1

Max speedup close to N

Why speedup with nearly
sequential code?

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

Amdahl's Law Revisited (Asymmetric Cores)
● Examples of different possible asymmetric multicore

processors
o Symmetric processor requires all cores to be equal, but

asymmetric processor could have a mix of big and little cores
o Each processor is using the same number of total resources (N=16)

§ One Big core with RB resources would leave N-RB resources for little
cores

§ Assuming each little core has R=1, total number of little cores are N-RB

7
Hill and Marty 2008

RB=16
RB=8 4

2

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1
1 1

1 1 1 1
1 1 1 1

1 1
1 11 1

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

Amdahl's Law Revisited (Asymmetric Cores)
● Serial fraction would still be represented as in symmetric

o (1-f) / Perf(RB)
● Parallel fraction using one big core with Perf(RB) performance and

N-RB little cores with Perf(1)=1 performance would now be
o f / (Perf(RB) + N – RB)

● Speedup(f, RB, N) = 1 / ({(1-f) / Perf(RB)} + {f/(Perf(RB) + N –RB)})

8
Hill and Marty 2008

RB=16
RB=8 4

2

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1
1 1

1 1 1 1
1 1 1 1

1 1
1 11 1

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

Amdahl's Law Revisited (Asymmetric Cores)
● Asymmetric multicore processor with total resources N=8. Perf(RB) modeled as square root of RB

o Speedup(f, RB, 16) = 1 / ({(1-f) / Perf(RB)} + {f/(Perf(RB) + 16 –RB)})

9
Hill and Marty 2008

Sp
ee

du
p

● Most real world applications
are a mix of sequential and
parallel code

● Providing a heterogeneous
processor with different types
of cores can help in improving
the performance of both the
sequential and parallel portion
o Sequential part runs on the big

core
o Parallel part runs on a bunch of

little cores

0
2
4
6
8

10
12
14
16
18

RB=1
Cores=16

RB=2
Cores=15

RB=4
Cores=13

RB=8
Cores=9

R=16
Cores=1

f=0.001 f=0.50 f=0.9 f=0.999

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

Software Issues with Asymmetric Multicore
● When to use the big core v/s little cores?

o Or, how to use them simultaneously if such application arrives
● Managing the locality
● Achieving energy efficiency execution

10

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

Today’s Class
● Amdahl's law revisited
● Integrated CPU-GPU architectures
● Runtime solution for hybrid CPU-GPU parallelism

11

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

Qualcomm Snapdragon Mobile SoC

12

Multicore DSP
processor

GPU

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

Intel Heterogeneous SoC Architecture

13

● Alder Lake S (2021)
o 8 Performance and 8 Efficient

cores
§ P cores max frequency 5Gz
§ E cores max frequency

3.8GHz
§ Up to 24 threads supported

o Integrated GPU with 32
Execution Units

o Shared memory across CPU
and GPU

Picture source: https://en.wikichip.org/wiki/intel/microarchitectures/alder_lake

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

1. Setup inputs on the host CPU
2. Allocate memory on the host CPU
3. Allocate memory on the GPU
4. Copy inputs from the host to GPU
5. Start GPU kernel
6. Copy output from the GPU to host

14

Programming Integrated CPU-GPU SoC
● Intel integrated CPU-

GPU architecture
o Host and the device

share the same
physical DRAM unlike
the discrete GPUs
§ Enables using the

same copy of
memory between
the CPU and GPU
• Avoids explicit

memory
transfers for
GPU kernel
execution

● Supported by OpenCL
2.0 Shared Virtual
Memory (SVM)
feature

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

OpenCL 2.0 Shared Virtual Address Space
● Allows sharing

pointers across host
and device
o Coherency in the

shared data modified
across host and
device on Intel
integrated GPUs

● Supported by
Boost.compute
using simple APIs

15

Source: https://www.intel.com/content/www/us/en/developer/articles/technical/opencl-20-shared-virtual-memory-overview.html

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

Using Boost.Compute SVM on Intel SoC

16

● Demo of programs available in course GitHub repository
o GPU-only vector addition

§ https://github.com/hipec/cse513/blob/main/lec17/vecadd.cpp
o Hybrid CPU-GPU matrix multiplication

§ https://github.com/hipec/cse513/blob/main/lec17/matmul.cpp

https://github.com/hipec/cse513/blob/main/lec17/vecadd.cpp
https://github.com/hipec/cse513/blob/main/lec17/matmul.cpp

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

Today’s Class
● Amdahl's law revisited
● Integrated CPU-GPU architectures
● Runtime solution for hybrid CPU-GPU parallelism

17

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

Hybrid CPU-GPU Matrix Multiplication
● Experiment using the

hybrid CPU-GPU matrix
multiplication inside the
course GitHub repo
(size=1024x1024)

● Intel i7-6700 processor
o 4-core CPU @ 3.4GHz
o 24-EU GPU @ 350MHz

● Optimal execution at 80%
offload
o Would vary depending on

application, processor,
and computation size

18

Percentage of computation offloaded to GPU

Ti
m

e
(m

illi
se

co
nd

s)

En
er

gy
 (J

ou
le

s)

Energy v/s Time

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

Software Challenges with Integrated CPU-GPU
● Scheduling – when to use the big core (or CPU) v/s little cores

(or GPU)?
o Heavily depends on the type of application

§ Offloading 80% computation on GPU was optimal in case of matrix
multiplication, but it might be suboptimal in case of vector addition
• Why?

§ Offloading percentage would be different for different kind of workloads (IO-
bound, memory-bound, CPU-bound, etc.)

o Depends on optimization criteria (time, or energy, or best of both, etc.)
● Programming – manually partitioning the workload would hurt

programmer’s productivity
● Solution – runtime assisted scheduling!

19

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

● Classification of work-load into eight categories during
actual execution (i.e., online profiling)
o Memory-bound or Compute-bound

§ Ratio of LLC misses to total instructions retired
o CPU or GPU suitable

20
[1] https://dl.acm.org/doi/abs/10.1145/2854038.2854052

Workload Category CPU Time GPU Time

CPU biased Short Long

GPU biased Long Short

Balanced short workload Short Short

Balanced long workload Long Long

Energy-Aware Scheduler for Integrated CPU-GPU1

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

● Power usage with CPU long v/s short
o Assume one job consumes 45W

package power when only using the
CPUs, and the same job consumes 30W
when only using the GPU

o Increasing the GPU offload from 0-100%
§ Power usage drops slowly for CPU-long

• Concave shaped curve
§ Power usage drops quickly for CPU-short

• Convex shaped curve

21
[1] https://dl.acm.org/doi/abs/10.1145/2854038.2854052

Pa
ck

ag
e

Po
w

er
 (W

)

GPU offload (%)

45

30

CPU-long
CPU-short

Energy-Aware Scheduler for Integrated CPU-GPU1

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

● How to do an online profiling in a running application?
o Classify the work-load by running a few iterations of the for-loop on

both CPU & GPU simultaneously (as categorized in Slide #20)
o Compare the findings of the online profiling either with a pre-trained

processor specific model (on-the-fly is also possible, and is
discussed in several papers)
§ A one-time characterization of the processor’s power usage by

measuring the power used by different kinds of workloads by varying
the value of alpha (α à percentage of tasks offloaded to GPU)
• Measured once on each experimental machine

§ This would give a power curve P(α) for different categories of programs
• P(α) is captured in form of polynomial expression

22
[1] https://dl.acm.org/doi/abs/10.1145/2854038.2854052

Energy-Aware Scheduler for Integrated CPU-GPU1

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

● Steps for energy aware runtime scheduling of parallel_for
1. If α exists for this computation

§ Schedule iterations over CPU-GPU using this known α value
• Any applications falling in this category that we have already

used before?
2. If α does not exists for this computation then perform repetitive

profiling to determine the minimum value of the target object
function (objective could be energy, EDP, etc.)
a) Divide fixed sized NChunks between CPU-GPU by changing α in

the range 0…100% (where, NTotal%NChunks=0)
• If Ntotal is too small then exit this loop and launch entire

computation on CPU only
b) Profile the CPU and GPU executions (CPU & GPU throughputs,

memory bandwidth, etc.)
c) Characterize work-load and determine corresponding power

curve
d) Increment α in step of 0.1 and repeat the above steps until half of

the Nchunks remaining

23
[1] https://dl.acm.org/doi/abs/10.1145/2854038.2854052

How to
choose the

value of
Nchunks?

Recall, Intel GPUs
have EUs akin to a
CPU-core, and are

also N-way SMT with
wide vector units

Energy-Aware Scheduler for Integrated CPU-GPU1

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

Reading Materials
● Amdahl's law in the multicore era

o https://www.cs.washington.edu/mssi/2008/talks/hill_msr_uw_0808.pdf
● OpenCL 2.0 shared virtual memory overview

o https://www.intel.com/content/www/us/en/developer/articles/technical/
opencl-20-shared-virtual-memory-overview.html

● A black-box approach to energy-aware scheduling on
integrated CPU-GPU Systems
o https://dl.acm.org/doi/abs/10.1145/2854038.2854052

24

https://www.cs.washington.edu/mssi/2008/talks/hill_msr_uw_0808.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/opencl-20-shared-virtual-memory-overview.html
https://dl.acm.org/doi/abs/10.1145/2854038.2854052

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

Next Lecture
● Power management in multicore processors
● Quiz-3

o Syllabus: Lectures 15-17

25

