Lecture 17: Heterogeneous
Parallel Programming

Vivek Kumar
Computer Science and Engineering
IIIT Delhi
vivekk@iiitd.ac.in

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 17: Heterogeneous Parallel Programming

Last Lecture (Recap) |

® Multicore processors are latency
oriented, whereas GPUs are throughput

oriented

intx a = new int[sizel;

intx b = new int[sizel;

// create 'a' vector on the GPU

compute::vector<int> vector_a(size, context);

// create 'b' vector on the GPU

// copy data from the host to the device

compute::future<void> future_a = compute::copy_asy
a, a+size, vector_a.begin(), queue

)i

// wait for copy to finish
future_a.wait();

// Create function defining the body of kernel
BOOST_COMPUTE_FUNCTION(int, vector_sum,

(int x), {
return x * 1.9 ;
});
// Launch the computation on the GPU using
// the command queue created above
compute: :transform(
vector_a.begin(),
vector_a.end(),
vector_b.begin(),
vector_sum
);:
// transfer results back to the host array 'c'

compute: :copy(vector_b.begin(), vector_b.end(), b);

[E CSE513: Parallel Runtimes for Modern Processors

DRAM |

l Cache l l Cache |

o] o
Thread Thread Thread | | Thread
State || State State || State
PC PC PC PC

L3 CACHE

Executing OpenCL Programs

1. Query host for OpenCL devices
Create a context to associate OpenCL devices

3. Create programs for execution on one or more
associated devices -

Select kernels to execute from the programs Log HOST

5. Create memory objects accessible from the 000
host and/or the device

Processing element

6. Copy memory data to the device as needed

7. Provide kernels to command queue for
execution

8. Copy results from the device to the host

© Vivek Kumar 1

O Lanteomeesmeermnns
Today’s Class

=>@® Amdahl's law revisited
® Integrated CPU-GPU architectures

® Runtime solution for hybrid CPU-GPU parallelism

D

Lecture 17: Heterogeneous Parallel Programming

Amdahl's Law Revisited

® Recall, maximum possible speedup for a program having
fraction “f" of its total execution “W” parallelizable on N
processing resources
O Speedup(f= N) = TSequentiaI / (TSequentiaI + TParaIIeI) =W/ {(1'f)W + fVV/N}
o Speedup(f, N)=1/{(1-f) + f/IN}

® The assumption is that there is uniform scalability of
processing resources when using more processors

[E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 3

Amdahl's Law Revisited (Symmetric Cores)

® Examples of different possible multicore processors that
are using the same number of total processing resources
o Each processor has identical cores (symmetric processor)
o Each processor is using the same number of resources (N=16)
= E.g., N could be total number of transistors on a processor
o Each core is consuming R number of these resources
= Hence, cores per processor is N/R

Given a choice,
which of these

processors you
El O iy

your system?
El BB

Hill and Marty 2008

Amdahl's Law Revisited (Symmetric Cores)

® Serial fraction of the program would now have a single core
(sequential) performance on these combinations as:

o (1-f)/ Perfs

Perfg is the performance of each of the single core of the processor type
R shown below

® Parallel fraction use N/R cores at the rate Perf(R) each
o f/(Perf(R)* (N/R)) = fR / Perf(R)*N

® Speedup(f, R, N) = 1/ ({(1-)/Perf(R)} + {f*R/(Perf(R)*N)})

N On
KN B

N
N

EEEE
EEEE
EEEE

EEEE

Hill and Marty 2008

Lecture 17: Heterogeneous Parallel Programming

Amdahl's Law Revisited (Symmetric Cores)

® Symmetric multicore processor with total resources N=16. Perf(R) ae\;/)roximated as

square root of R (adding resources won't give linear performance —

hy?)

o Speedup(f, R, 16) = 1/ ({(1-f)/Perf(R)} + {F*R/(Perf(R)*16)})

18
16 _—
14
12 Why speedup with nearly
a 10 sequential code?
-]
§®)
8 8
Q 6
(7p)
4
2
0
R=1 R=2 R=4 R=8 R=16
Cores=16 Cores=8 Cores=4 Cores=2 Cores=1
f=0.001 f=0.50 f=0.9 f=0.999

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

At f=0.5, single core speedup
better than 16 cores

o Code should have parallelism for
taking the benefit of multicores

f=0.999 achieves far better
speedup than f=0.9 using
same 16 cores

o “f" matters — Need to have as
much parallelism as possible

Any value of “f" achieves
same speedup using R-16, C-1

Hill and Marty 2008
6

Amdahl's Law Revisited (Asymmetric Cores)

® Examples of different possible asymmetric multicore
processors

o Symmetric processor requires all cores to be equal, but
asymmetric processor could have a mix of big and little cores

o Each processor is using the same number of total resources (N=16)
= One Big core with Rg resources would leave N-Rg resources for little

cores

= Assuming each little core has R=1, total number of little cores are N-Rp
w
:

Hill and Marti 2008

Amdahl's Law Revisited (Asymmetric Cores)

® Serial fraction would still be represented as in symmetric
o (1-f) / Perf(Rg)

® Parallel fraction using one big core with Perf(Rg) performance and
N-Rg little cores with Perf(1)=1 performance would now be

o f/(Perf(Rg) + N — Rg)
® Speedup(f, Rg, N) =1/ ({(1-f) / Perf(Rg)} + {f/(Perf(Rg) + N —Rg)})

L 3
2

Hill and Marty 2008

Lecture 17: Heterogeneous Parallel Programming

Amdahl's Law Revisited (Asymmetric Cores)

® Asymmetric multicore processor with total resources N=8. Perf(Rg)
modeled as square root of Ry

o Speedup(f, Rg, 16) =1/ ({(1-f) / Perf(Rg)} + {f/(Perf(Rg) + 16 —Rg)})

18
16
14
12
10

Speedup

O N B O ®©

RB=1 RB=2 RB=4
Cores=16 Cores=15 Cores=13

f=0.001 f=0.50 f=0.9

E CSE513: Parallel Runtimes for Modern Processors

RB=8 R=16
Cores=9 Cores=1

f=0.999

© Vivek Kumar

Most real world applications
are a mix of sequential and
parallel code

Providing a heterogeneous
processor with different types
of cores can help in |mRrovmg
the performance of both the
sequential and parallel portion

o Sequential part runs on the big
core

o Parallel part runs on a bunch of
little cores
Hill and Marty 2008

9

Lecture 17: Heterogeneous Parallel Programming

Software Issues with Asymmetric Multicore

® \When to use the big core v/s little cores?
o Or, how to use them simultaneously if such application arrives

® Managing the locality
® Achieving energy efficiency execution

[E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 10

O Lanteomeesmeermnns
Today’s Class

® Amdahl's law revisited
=>® Integrated CPU-GPU architectures
® Runtime solution for hybrid CPU-GPU parallelism

D

Lecture 17: Heterogeneous Parallel Programming

Qualcomm Snapdragon Mobile SoC

arm Cortex-X1

1000000000000 0000000000000000000000000OCRLLL
1000000000000 00000000000000000000000000000CO

Qualcomm Spectra™
580 ISP

S0 sssBsBRNES
S sPPIRNRRIRREDS

Qualcomm® Adreno™
660 GPU

V0000000000000 04
0000000000000 0 04

Qualcomm® Hexagon™
780 Processor

Qualcomm® Qualcomm® Qualcomm®
Sensing Processor Kryo~
Hub Security 680 CPU

g
3
5|2
93
He

o

Qualcomm®
Snapdragon~

X60 5G Modem-RF FastConnect*
6900 System

Qualcomm®

Multicore DSP
processor

[E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Intel Heterogeneous SoC Architecture
® Alder Lake S (2021)

o 8 Performance and 8 Efficient
cores
= P cores max frequency 5Gz

= E cores max frequency
3.8GHz

» Up to 24 threads supported

o Integrated GPU with 32
Execution Units

o Shared memory across CPU
and GPU

Picture source: https://en.wikichip.org/wiki/intel/microarchitectures/alder_lake

Lecture 17: Heterogeneous Parallel Programming

Programming Integrated CPU-GPU SoC

® Intel integrated CPU-

1. Setup inputs on the host CPU GPU architecture
o Host and the device
2. Allocate memory on the host CPU share the same
hysical DRAM unlike
——AHeeate-memery-orthe-SRY he discrete GPUs
] ~h = Enables using the
. Same COopy O
—4—Copy-inrputsfromthe-hestte- GRPU— memory between
the CPU and GPU
5. Start GPU kernel ey Pl
transfers for
GPU kernel
—5—Copyoutoutfrom the DIl to host ecuian
® Supported by OpenCL
Opghared Virtual
Memo (SVM)
feature

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 14

OpenCL 2.0 Shared Virtual Address Space

® Allows sharing
pointers across host
and device

o Coherency in the
shared data modified
across host and

— device on Intel

e integrated GPUs

® Supported by
Boost.compute
using simple APls

Source: https://www.intel.com/content/www/us/en/developer/articles/technical/opencl-20-shared-virtual-memory-overview.html

D

Lecture 17: Heterogeneous Parallel Programming

Using Boost.Compute SVM on Intel SoC

® Demo of programs available in course GitHub repository

o GPU-only vector addition
= https://github.com/hipec/cse513/blob/main/lec1//vecadd.cpp

o Hybrid CPU-GPU matrix multiplication
= https://github.com/hipec/cse513/blob/main/lec1//matmul.cpp

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 16

https://github.com/hipec/cse513/blob/main/lec17/vecadd.cpp
https://github.com/hipec/cse513/blob/main/lec17/matmul.cpp

O Lanteomeesmeermnns
Today’s Class

® Amdahl's law revisited
® Integrated CPU-GPU architectures
=>® Runtime solution for hybrid CPU-GPU parallelism

D

600

500

400

300

Time (milliseconds)

0

10

[E CSE513: Parallel Runtimes for Modern Processors

Lecture 17: Heterogeneous Parallel Programming

Hybrid CPU-GPU Matrix Multiplication

Energy v/s Time

20 30 40 50 60 70 80 90

Percentage of computation offloaded to GPU

25

20

15

10

© Vivek Kumar

Energy (Joules)

® EXxperiment using the
hybrid CPU-GPU matrix
multiplication inside the
course GitHub repo
(size=1024x1024)

® Intel i7-6700 processor
o 4-core CPU @ 3.4GHz
o 24-EU GPU @ 350MHz

® Of%)timal execution at 80%
offload

o Would vary depending on
application, processor,
and computation size

18

Lecture 17: Heterogeneous Parallel Programming

Software Challenges with Integrated CPU-GPU

® Scheduling — when to use the big core (or CPU) v/s little cores
(or GPU)?
o Heavily depends on the type of application

= Offloading 80% computation on GPU was optimal in case of matrix
multiplication, but it might be suboptimal in case of vector addition
Why?

= Offloading percentage would be different for different kind of workloads (IO-
bound, memory-bound, CPU-bound, etc.)

o Depends on optimization criteria (time, or energy, or best of both, etc.)

® Programming — manually partitioning the workload would hurt
programmer’s productivity

® Solution — runtime assisted scheduling!

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 19

Lecture 17: Heterogeneous Parallel Programming

Energy-Aware Scheduler for Integrated CPU-GPU*"

® Classification of work-load into eight categories during
actual execution (i.e., online profiling)

o Memory-bound or Compute-bound
= Ratio of LLC misses to total instructions retired

o CPU or GPU suitable

CPU biased Short Long
GPU biased Long Short
Balanced short workload Short Short
Balanced long workload Long Long

- [1] https://dl.acm.org/doi/abs/10.1145/2854038.2854052
E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 20

Lecture 17: Heterogeneous Parallel Programming

Energy-Aware Scheduler for Integrated CPU-GPU*"

CPU-long
CPU-short

N
&)
@

Package Power (W)
&S
Q@

GPU offload (%)

E CSE513: Parallel Runtimes for Modern Processors

® Power usage with CPU long v/s short
o Assume one job consumes 45W

package power when only using the

CPUs, and the same job consumes 30W

when only using the GPU

Increasing the GPU offload from 0-100%

= Power usage drops slowly for CPU-long
Concave shaped curve

= Power usage drops quickly for CPU-short
Convex shaped curve

[1] https://dl.acm.org/doi/abs/10.1145/2854038.2854052
© Vivek Kumar 21

Lecture 17: Heterogeneous Parallel Programming

Energy-Aware Scheduler for Integrated CPU-GPU*"

® How to do an online profiling in a running application?

o Classify the work-load by running a few iterations of the for-loop on
both CPU & GPU simultaneously (as categorized in Slide #20)

o Compare the findings of the online profiling either with a pre-trained
processor specific model (on-the-fly is also possible, and is
discussed in several papers)

= A one-time characterization of the processor’s power usage by
measuring the power used by different kinds of workloads by varying
the value of alpha (a - percentage of tasks offloaded to GPU)

« Measured once on each experimental machine
= This would give a power curve P(a) for different categories of programs
P(a) is captured in form of polynomial expression

- [1] https://dl.acm.org/doi/abs/10.1145/2854038.2854052
E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 22

o lweireeosmeosPameegenme
Energy-Aware Scheduler for Integrated CPU-GPU'

® Steps for energy aware runtime scheduling of parallel_for

1. If a exists for this computation
" Schedule iterations over CPU-GPU using this known a value

. Any applications falling in this category that we have already N 5
used before? chunks
2. If a does not exists for this computation then perform repetitive
rofiling to determine the minimum value of the target object @
unction (objective could be energy, EDP, etc.) ®

a) Divide fixed sized N¢hunks between CPU-GPU by changingain e
the range 0...100% (where, N1o15%Nchunks=0)

. If Niota i too small then exit this loop and launch entire
computation on CPU only Recall, Intel GPUs

b) Profile the CPU and GPU executions (CPU & GPU throughputs, have EUs akin to a

How to
choose the
value of

memory bandwidth, etc.) CPU-core, and are
c) Characterize work-load and determine corresponding power also N-way SMT with
curve wide vector units

d) Increment ain step of 0.1 and repeat the above steps until half of
the Nghunks Ffemaining

‘1 ‘ httis://dl.acm .ori/doi/abS/1 0.1145/2854038.2854052

Lecture 17: Heterogeneous Parallel Programming

Reading Materials

® Amdahl's law in the multicore era
o https://www.cs.washington.edu/mssi/2008/talks/hill msr uw 0808.pdf

® OpenCL 2.0 shared virtual memory overview
o https://www.intel.com/content/www/us/en/developer/articles/technical/
opencl-20-shared-virtual-memory-overview.html

® A black-box approach to energy-aware scheduling on
integrated CPU-GPU Systems

o hitps://dl.acm.org/doi/abs/10.1145/2854038.2854052

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 24

https://www.cs.washington.edu/mssi/2008/talks/hill_msr_uw_0808.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/opencl-20-shared-virtual-memory-overview.html
https://dl.acm.org/doi/abs/10.1145/2854038.2854052

O owetmeeomeossPaePogannig
Next Lecture

® Power management in multicore processors

® Quiz-3
o Syllabus: Lectures 15-17

D

