Lecture 18: Power Management in Multicore Processors

Vivek Kumar
Computer Science and Engineering
IIIT Delhi
vivekk@iiitd.ac.in

Today's Class

- Power management features on modern processors
 - Runtime techniques for achieving energy efficiency
 - Quiz-3

The Energy Challenge

Top500 Rank (June 2020)	PFlops/s	Power (MW)	Cores per Socket
1	442	29	48
2	148	10	22
3	94	7	22

Upcoming Exascale Systems

64 - 96 Cores / Socket

It is crucial to effectively manage and optimise the parallelism to conserve energy

20 MW **Power** budget

Component wise Power Consumption

- As per studies of power consumption in a data center
 - 50% of incoming power is consumed by air-conditioning and power-delivery subsystems, even before reaching the servers in a rack
 - Rest 50% consumed by the servers, which can be further broken down into the various elements as shown above

Source: https://www.intel.com/content/dam/support/us/en/documents/motherboards/server/sb/power management of intel architecture servers.pdf

Power Management Tradeoff

Usually, power consumption is proportional to performance

Processor States (P-states)

- Dynamic Voltage and Frequency Scaling (DVFS) is used by the processor to operate the core at a specific frequency and voltage
- Each P-states have an associated frequency
 - Userspace applications are allowed to change the P-states of each core independently on modern processors
- Multiple levels for turbo frequency depending on the workload
 - Num_{TurboPstates} = Num_{NonTurboPstates} + 1
- During standard operation condition, all cores run at the base frequency
 - Successive P-states below the base frequency differs by 100MHz

Source: https://builders.intel.com/docs/networkbuilders/power-management-technology-overview-technology-guide.pdf

CPU States (C-States)

- Power states used by the CPUs to reduce the power at Core level or on a CPU Package Core level (core, private caches, etc.)
- L1 and L2 are flushed to L3 in C6 (next C0 might require data reload)
- o PC0 is the active state. Rest other PC states require C6 to be active
- o "mwait" and "monitor" instructions can be used to move a logical core to some C-State

Source: https://builders.intel.com/docs/networkbuilders/power-management-technology-overview-technology-guide.pdf

Multicore Processor

Uncore frequency scaling

- Changes the frequency of the uncore elements in the processor
- Can be set in the userspace similar to DVFS
- Currently supported only by Intel processor
 - No information publicly available about AMD processors

- Speed Select technology that provides collection of features for more granular control over processor performance and power usage
 - Allows base frequency of few cores to be increased in exchange of lowering the base frequency of the remaining cores
 - Users can assign priority to each core such that they can get surplus frequency
 - Certain number of cores can run at higher turbo frequency than the rest of the cores
- Power capping is another technique where the user specifies the power budget, and the processor dynamically uses DVFS and UFS to balance the core/uncore frequencies such that the power usage of the application stays within the assigned budget

Today's Class

- Power management features on modern processors
- Runtime techniques for achieving energy efficiency
 - Quiz-3

Application Type Affects Power Usage

- Compute bound applications requires high core frequency than the uncore frequency
- Memory bound applications require high uncore frequency than the core frequency
- Processor will increase both the core and uncore frequencies as an application moves from compute bound to memory bound, thereby resulting in high power usage

Graph source: https://dl.acm.org/doi/10.1145/3458817.3476163

Class Discussion

- Recall the Energy Aware Scheduler from Lecture #17
 - How can we improve it to improve the energy efficiency even further using frequency scaling?

Dynamic Concurrency Throttling

- How about purely multicore execution?
- The graph shows the workload generated by the recursive task parallel quick sort application on a dual socket 10-core Intel Xeon E5-2650v3 processor (using 20 workers)
 - Workload changes dynamically across its execution timeline
 - Idea: Dynamically throttling the active thread count can save energy

Dynamic Concurrency Throttling

High level architecture

Daemon thread running the dynamic concurrency throttling algorithm. Daemon created and destroyed inside init and finalize, respectively

```
#include <iostream>
#include <runtime.h>
int main() {
   runtime::init();
   parallel_computation();
   runtime::finalize();
   return 0;
}
```


Paper: https://dl.acm.org/doi/10.1145/2594291.2594292

Dynamic Concurrency Throttling

- Daemon thread wakes up at fixed intervals to monitor the workload by reading hardware performance counters
 - o E.g., instructions retired per second, or joules per instruction retired
- Measures the difference in workload to calculate the new Degree of Parallelism (DOP), i.e., total number of active workers (less workers if workload decreases and vice-versa)
- Each work-stealing workers checks currently set DOP and total number of workers currently active. If more workers are active than DOP, then extra workers go to sleep (pthread_cond_wait), whereas if less workers active tha DOP then more workers are brought into active state (pthread_cond_signal)
 - Carried out during push, pop, and steal operations

Paper: https://dl.acm.org/doi/10.1145/2594291.2594292

Reading Materials

- Power management technology overview
 - https://builders.intel.com/docs/networkbuilders/powermanagement-technology-overview-technology-guide.pdf
- Dynamic concurrency throttling
 - o https://dl.acm.org/doi/10.1145/2594291.2594292

Next Lecture

- Cache coherency
- Project milestone-3 will be announced tomorrow (11th Nov)
 - Three weeks deadline (4th December)
 - Project presentations on 7th & 9th of December
 - Evaluations of all three milestones on a multicore server
 - Your ideas and findings