
CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

Today’s Class
● Cache coherency
● MSI protocol
● MESI protocol

2

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

Memory Hierarchy

3

On chip

Off chip

Latency and
capacity increases

as we go down

Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-
f10/www/lectures/09-memory-hierarchy.pptx

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

How Bad is Latency as we go Down?

4

Animation source: https://overbyte.com.au/misc/Lesson3/CacheFun.html

● Another analogy
o Normalizing with

L1 latency, and
assuming one
seconds is equal
to 4 cycles
§ L1 = one

second
§ L2 = 7.5

seconds
§ Main memory =

2.5 minutes
§ Hard drive = in

several days!

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

Which is Better & Why?

5

float A[n][n]; // initialized
float sum=0;
...
for(int row=0; row<n; row++) {

for(int col=0; col<n; col++) {
sum += A[row][col];

}
}

float A[n][n]; // initialized
float sum=0;
...
for(int col=0; col<n; col++) {

for(int row=0; row<n; row++) {
sum += A[row][col];

}
}

v/s

float A[n], B[n], C[n]; // initialized

for(int i=0; i<n; i++) {
C[i] = A[i] + B[i];

}

typedef struct Triplet {
float A;
float B;
float C;

} Triplet;

Triplet T[n]; // initialized

for(int i=0; i<n; i++) {
T[i].C = T[i].A + T[i].B;

}

v/s

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

General Cache Concepts
● Cache: A

smaller, faster
storage device
that acts as a
staging area for
a subset of the
data in a larger,
slower device
o Temporal and

spatial locality

6

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

4

4

4

10

10

10Cache

Memory
(DRAM)

Data is copied in cache line size

Credits: Bryant and O’Hallaron, Lecuture 9, CMU 15-213/18-243

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

General Cache Concepts

● Cache hit
o Data is already in the

cache in some cache
line
§ Cache line size is 64

bytes on x86
processors

§ Cache line is the
smallest granularity of
load/store of any
memory block from
DRAM

7

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
(DRAM)

Request: 14

14

Data in line b is needed

Line b is in cache:
Hit!

Credits: Bryant and O’Hallaron, Lecuture 9, CMU 15-213/18-243

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

General Cache Concepts

8

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
(DRAM)

Data in line b is neededRequest: 12

Line b is not in cache:
Miss!
Line b is fetched from
memory

Request: 12

12

12

12

Line b is stored in cache
By evicting some old line

Credits: Bryant and O’Hallaron, Lecuture 9, CMU 15-213/18-243

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

The Cache Coherence Problem

9

Cache

X=10

Core-1 Core-2

Memory

Read(X)

X=10 Cache

1

2 3

4

Cache

X=10

Core-1Core-1

Memory

Read(X)

X=10Cache

1

2 3

4

X=10

X=10Cache

X=10

Core-1 Core-2

Memory

Write(X++)

X=5 Cache X=11 Cache

X=10

Core-1 Core-2

Memory

Write(X=5)

X=5 Cache X=10

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

Defining Cache Coherence Differently
(As we have studied Memory Consistency)
● Program order must be maintained at a single processor

o A read by processor P to address X that follows a write by P to address X, should return
the value of the write by P
§ Assuming no other processor wrote to X in between

● Write propagation to other processors
o A read by processor P1 to address X that follows a write by processor P2 to X returns the

written value... if the read and write are “sufficiently separated” in time (store buffers!)
§ Assuming no other writes to X occurs in between

● Write serialization
o Writes to the same address are serialized: two writes to address X by any two processors

are observed in the same order by all processors
§ E.g., if values 1 and then 2 are written to address X, no processor observes X having value 2

before value 1

10

Credits: Fatahalian and Bryant, CMU 15-418/618

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

11

Cache X=10

X=10

Core-1 Core-2

Memory

Read(X)

1

2 3

4

Cache X=10

X=10

Core-1 Core-2

Memory

Read(X)

2

1

Cache X=5

X=10

Core-1 Core-2

Memory

Write(X=5)

Cache X=11

X=10

Core-1 Core-2

Memory

Write(X++)

Coherence using Shared Cache Only
● While it is

easy to
implement,
it would be
very costly
and
inefficient
o Why?

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

Coherence using Private Caches
● Snooping based

coherency protocol
o Each core’s cache

controller broadcast any
memory operations it
wishes to perform before
actually carrying out that
operation

o Rest of the core’s cache
controllers having that
memory operations acts
like a good citizen and help
others to carry out their
intended operation

12

Cache controllers
keeps snooping for
memory operations

Cache

Core-1 Core-2

Memory

Load / Store

Cache

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

Private v/s Shared Cache Coherency
● Coherency using shared cache

o Cache just have to look up to the processor and do the load/store
instructions issued by the processor

● Coherency using private caches
o Each cache has its own core to which it look after, but it also pays

attention to what is going on in other caches or what is going over
the interconnect
§ They are snooping!

13

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

Snooping with Write-through Caches

14

X=10Cache

X=5

Core-1 Core-2

Memory

X=5 Cache X=5 Cache

X=10

Core-1 Core-2

Memory

X=5 Cache X=10

1 2

Write(X=5)

Its fine
Its fine

Its
NOT
fine

Issues
here??

Cache

X=10

Core-1 Core-2

Memory

Read(X)

X=10 Cache

1

2 3

4

Cache

X=10

Core-1Core-1

Memory

Read(X)

X=10Cache

1

2 3

4

X=10

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

Snooping using Write-back Caches (1/5)
● MSI write-back

invalidation
protocol
o Invalid

§ Line not
available on
cache

o Shared
§ Line in read

only mode
o Modified

§ Line in
modified or
dirty state

15

Core-1 Core-2

Interconnect

1

PrRd

Cache

Memory

M A=0

Cache

Cache line size block

Invalid state
as data “A”

not available
in cache

Its fine, as I
don’t have

that cache line
(Invalid state)

3

Fetch a copy of
cache line for
reading only

(Shared state)

S A=0

4

2

BusRd

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

16

Cache

Core-1

Memory

M A=0

Cache

Core-2

Interconnect

Cache line size block

Its fine, as I
don’t have

that cache line
(Invalid state)1

PrWr

2

BusRdX

Line is
currently in
Shared state

Announce C-1 is
taking the line in
Modified state

(exclusive)

3

M A=5

4

● MSI write-back
invalidation
protocol
o Invalid

§ Line not
available on
cache

o Shared
§ Line in read

only mode
o Modified

§ Line in
modified or
dirty state

Snooping using Write-back Caches (2/5)

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

17

Cache

Core-1

Memory

M A=0

Cache

Core-2
1

PrRd

Interconnect

Cache line size block

M A=5

No action
required as C-1
has the line in

“M” state

● MSI write-back
invalidation
protocol
o Invalid

§ Line not
available on
cache

o Shared
§ Line in read

only mode
o Modified

§ Line in
modified or
dirty state

Snooping using Write-back Caches (3/5)

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

18

Cache

Core-1

Memory

M A=5

Cache

Core-2

flush

Interconnect

Cache line size block
5

S A=5

4

3

1

PrRd

BusRd

Invalid state
as data “A”

not available
in cache

Fetch a copy of
cache line for
reading only

(Shared state)

2

S A=5

Line is currently in
Modified state, so

drop to Shared
state

● MSI write-back
invalidation
protocol
o Invalid

§ Line not
available on
cache

o Shared
§ Line in read

only mode
o Modified

§ Line in
modified or
dirty state

Snooping using Write-back Caches (4/5)

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

19

Cache

Core-1

Memory

M A=5

Cache

Core-2

Interconnect

Cache line size block

S A=5 M A=5

● MSI write-back
invalidation
protocol
o Invalid

§ Line not
available on
cache

o Shared
§ Line in read

only mode
o Modified

§ Line in
modified or
dirty state

Snooping using Write-back Caches (5/5)

I have this line, I
should Invalidate

4

1

PrWr

BusRdX

Line is currently
in Shared state

3

Announce C-2 is
taking the line in
Modified state

(exclusive)

2

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

20

Credits: Fatahalian and Bryant, CMU 15-418/618

● A line in the M state can be modified without
notifying other caches

● Processor can only write to lines in the M state
o If line is not already exclusive in cache, cache controller

must first broadcast a read-exclusive transaction to
move the line into that state
§ Required even if the line is in Shared state

● When other processor’s cache controller snoops a
read exclusive for a line it contains
o Must invalidate the line in its cache
o Because if it didn’t, then multiple caches will have the

same line

MSI Protocol Summary

BusRdX /
flush

PrWr /
BusRdX

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

What is Wrong with MSI?

21

● Core-1 reads a data, and then wishes to modify it
o The line is only in Core-1’s, but it’s cache controller still has to perform

BusRdX operation for moving the line from “S” state to “M” state
§ Redundant traffic over the interconnect

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

MESI Protocol (1/3)

22

Its fine, as I
don’t have

that cache line
(Invalid state)

Cache

Core-1

Memory

M A=0

Cache

Core-2
1

PrRd

Interconnect

2

BusRd

Cache line size block

Invalid state
as data “A”

not available
in cache

Fetch a copy of cache
line for reading only

(Exclusive state as no
other cache has it)

3

E A=0

4

● An additional
state E
o Exclusive

clean
o Implies no

other cache
has a copy
of this line

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

MESI Protocol (2/3)

23

Cache

Core-1

Memory

M A=0

Cache

Core-2
1

PrWr

Interconnect

Cache line size block

Line is
currently in

Exclusive
state

M A=5

2Directly move
to “M” state as
C-1 has the line

in “E” state

● Moving from E
to M state
o No action

required to
be
performed
on
interconnect

o Present E
state implies
the line is
not in any
other cache

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

MESI Protocol (3/3)

24

Cache

Core-1

Memory

Cache

Core-2

Interconnect

Cache line size block

M A=5 S B=0

M A=0B=0

5

Hey! I also
have that

same line in
Exclusive state 1

PrRd

2

BusRd

Invalid state
as data “B”

not available
in cache

Fetch a copy of cache
line for reading only

(Shared state as other
cache also has it)

3

S B=0

E

Move this line
from Exclusive
to Shared state

4 ● C-1 wants to
read a line (B)
which C-2 also
has (E state)
o C-1 cannot

have it in E
state, as C-2
also wants to
own it for read
purpose

o C-2 drops it
from E to S
state

o C-1 has the
line in S state

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

25

Credits: Fatahalian and Bryant, CMU 15-418/618

MESI Protocol Summary

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

How Many Cache Misses Below?

26

float A[n][n]; // initialized
float sum=0;
...
for(int row=0; row<n; row++) {

for(int col=0; col<n; col++) {
sum += A[row][col];

}
}

float A[n][n]; // initialized
float sum=0;
...
for(int col=0; col<n; col++) {

for(int row=0; row<n; row++) {
sum += A[row][col];

}
}

v/s

float A[n], B[n], C[n]; // initialized

for(int i=0; i<n; i++) {
C[i] = A[i] + B[i];

}

typedef struct Triplet {
float A;
float B;
float C;

} Triplet;

Triplet T[n]; // initialized

for(int i=0; i<n; i++) {
T[i].C = T[i].A + T[i].B;

}

v/s

● Assume
n is 32,
cache
line size
is 64
bytes,
and
single
precision
floating
point
variable

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 19: Cache Coherency

Next Lecture
● False sharing

27

