
CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

Today’s Class
● False sharing
● Runtime solutions for detecting/repairing false sharing

o Sheriff
o Featherlight

Acknowledgement: Today’s lectures slides are adapted from
several conference presentation slides available online on
false sharing

2

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

False Sharing

3

int count[8]; //Global array

thread_func(int id) {
for(i = 0; i < M; i++)

count[id]++;
} 0

10
20
30
40
50
60
70
80
90

1 2 4 8
Ru

nt
im

e(
s)

Number of threads

Expectation

Let’s try to understand the problem in this
code using the MESI coherence protocol

Sources: https://people.umass.edu/tongping/pubs/dthreads-final.pptx, and
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

False Sharing

4

0
20
40
60
80

100
120
140

1 2 4 8
Ru

nt
im

e(
s)

Number of threads

Reality Expectation

Sources: https://people.umass.edu/tongping/pubs/dthreads-final.pptx, and
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

int count[8]; //Global array

thread_func(int id) {
for(i = 0; i < M; i++)

count[id]++;
}

count[id]++;

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

False Sharing vs. True Sharing

5

Cache Line

Sources: https://people.umass.edu/tongping/pubs/dthreads-final.pptx, and
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

False Sharing vs. True Sharing

Sources: https://people.umass.edu/tongping/pubs/dthreads-final.pptx, and
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

False Sharing

7

Thread 1

Main Memory

Core 1
Thread 2

Core 2

Invalidate
Cache Cache

Sources: https://people.umass.edu/tongping/pubs/dthreads-final.pptx, and
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

False Sharing

8

Thread 1 Thread 2

Invalidate

Main Memory

Core 1 Core 2

20x
Cache Cache

Sources: https://people.umass.edu/tongping/pubs/dthreads-final.pptx, and
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

Resource Contention at Cache Line Level

9
Sources: https://people.umass.edu/tongping/pubs/dthreads-final.pptx, and
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

False Sharing is Everywhere

10

me = 1;
you = 1; // globals

me = new Foo;
you = new Bar; // heap

class X {
int me;
int you;

}; // fields

arr[me] = 12;
arr[you] = 13; // array indices

Two different threads
T1 & T2 are involved

Sources: https://people.umass.edu/tongping/pubs/dthreads-final.pptx, and
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

Detecting / Removing False Sharing
● Solutions based on instrumenting memory access and O.S.

o Sheriff
§ It can both detect, and resolve false sharing during runtime
§ Fakes threads with processes
§ Uses page protection mechanism to track false sharing

o and many more…

● Solutions based on hardware Performance Monitoring Units (PMUs)
o Featherlight

§ Uses lightweight profiling of hardware Performance Monitoring Units (PMUs) and
debug registers

§ Addresses several shortcomings of prior implementations
• Doesn’t require instrumenting memory accesses of O.S.
• Extremely low overheads

o and many more…
11

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

Walkthrough of Sheriff Execution

12

1. /* global variables */
2. int sum[2];
3. int main() {
4. /* heap allocations */
5. int a = new int[size]; //initialized
6. T1 = new thread([=]() {
7. for(int i=0; i<size/2; i++) sum[0]+=a[i];
8. });
9. T2 = new thread([=]() {
10. for(int i=size/2; i<size; i++) sum[1]+=a[i];
11. });
12. T1.join(); T2.join();
13. //Cleanups
14. }

1. Initialization – creating
mapping of global and heap

variables for processes

2. Process creation – creating
processes instead of threads

3. Execution – copies of
memory pages per

process for local updates

4. Synchronization –
merging diffs in per-process
pages into the global copy

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

Sheriff Execution: Process Creation

13

shared address space disjoint address spaces

Sources: https://people.umass.edu/tongping/pubs/dthreads-final.pptx, and
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

● In Linux, both pthreads and processes are essentially a
KLT, and are created using the same API (do_fork)

● Threads are created on the same CPU to improve locality,
whereas processes are created on different CPUs

14

Sheriff Execution: Process Creation

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

15

Global State Main Memory

Cache Cache

Core 1 Core 2
Sheriff Execution: Initialization

Sources: https://people.umass.edu/tongping/pubs/dthreads-final.pptx, and
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

Process 1 Process 2

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

Sheriff Execution: Initialization
● Advantages of converting threads into processes

o Enables the use of per-thread page protection, allowing Sheriff to track
memory accesses by different threads (processes)

o Each thread’s (process) memory access are isolated, hence they would not
update the same cache line
§ No false sharing!

● Memory mapped files are used to share global and heaps across
different processes

● Twin copies of the pages for storing the global and heaps
o Shared mapping for holding shared states

§ Pages storing these shared states are marked copy-on-write
o Private mapping for per-process updates

§ Private copy of of the above shared pages are created whenever a process would
attempt to update a page for the first time

16

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

17

Process 1 Process 2

Global State Main Memory

Cache Cache

Core 1 Core 2

Process 1

Process 2

Sheriff Execution: Execution

Sources: https://people.umass.edu/tongping/pubs/dthreads-final.pptx, and
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

Sheriff Execution: Synchronization
● There are two different types of synchronization points

o Thread termination
o End of the critical section (mutex unlock), barriers, etc.

● At each synchronization point, Sheriff commits changes
from private pages to the shared pages
o It commits only the differences between the twin and the modified

pages

18

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

19

Sheriff Execution: Synchronization

Snapshot and diffing
the local changes

Sources: https://people.umass.edu/tongping/pubs/dthreads-final.pptx, and
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

20

Process 1 Process 2

Main Memory

Process 1
Process 2

Global State

Cache Cache

Core 1 Core 2

Interleaved writes

Sheriff Execution: Synchronization

Sources: https://people.umass.edu/tongping/pubs/dthreads-final.pptx, and
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

21

a 0

b 0

a 1

b 1

a 0

b 0

a 0

b 0

a 0

b 0

if(a == 0)
b = 1;

if(b == 0)
a = 1;

Global State

Committed State

a 1

b 1

Sheriff Execution: Synchronization

Sources: https://people.umass.edu/tongping/pubs/dthreads-final.pptx, and
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

Featherlight: High Level Overview

23

● PMUs sample memory
address M accessed by
each thread (or
process)

● A thread publishes its
sampled address at a
common location visible
to other threads

● Other threads use
hardware debug
registers to monitor the
addresses sharing the
same cache line as M,
excluding M itself

● If a thread accesses
another variable in the
same cache line, the
debug register traps,
which indicates false
sharing

Debug registers enable trapping CPU execution for debugging when
the PC (program counter) reaches an address (breakpoint) or an
instruction accesses a designated address (watchpoint)

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

Reading Materials
● Sheriff

o https://people.umass.edu/tongping/pubs/sheriff-oopsla11.pdf
● Featherlight

o https://dl.acm.org/doi/10.1145/3178487.3178499

24

https://people.umass.edu/tongping/pubs/sheriff-oopsla11.pdf
https://dl.acm.org/doi/10.1145/3178487.3178499

CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 20: False Sharing

Next Lecture (L #21)
● Data race detection in task parallel programs

25

