Lecture 21: Resilience In the
Exascale Era

Vivek Kumar
Computer Science and Engineering
IIIT Delhi
vivekk@iiitd.ac.in

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

o Gomrieeenvebsaess
Last Lecture (Recap)

® False sharing
® Runtime solutions for detecting/repairing false sharing

D

o cwrtelecnmesaess
Today’s Class

=>@® Exascale computing
® Approaches for resilience
® Runtime solutions for resilient task-parallel programs

D

Lecture 21: Resilience in the Exascale Era

What is Exascale Computing Project?

® \When we say the Exascale Computing Project — what
comes to mind?

o Hardware / systems / platforms?
o Software / software stack?
o Applications?

® |f you were thinking “all the above”™ — you were right

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Achieving capable exascale computing

Support applications solving science problems 50x faster or more complex
than today’s 20 PF systems

Operate in a power envelope of 20-30 MW
Be sufficiently resilient (average fault rate no worse than weekly)
At least two diverse system architectures

Possess a software stack that meets the needs of a broad spectrum of
applications

A holistic prog'ect approach is needed that uses co-design to develop new
platform, solf ware, and computational science capabilities at heretofore
unseen scale

o Essential for tackling much deeper challenges than those that can be solved by
hardware scale alone

E CSE513: Parallel Runtimes for Modern Processors Slide source: Paul Messina, CHEP 2016 4

https://indico.cern.ch/event/505613/contributions/2314342/attachments/1352148/2041459/Messina.ECP.CHEP_2016-10-10.final.pptx

N
Key Challenges for Exascale

® Parallelism
o Main highlight of this course

® Memory and Storage

o We covered NUMA and locality in context of the memory, but we
are not covering storage in this course

® Reliability

® Energy Consumption
o Covered in lectures 17 and 18

D

o cwrtelecnmesaess
Today’s Class

® Exascale computing
=>® Approaches for resilience
® Runtime solutions for resilient task-parallel programs

D

Lecture 21: Resilience in the Exascale Era

Resilience

® It is the techniques for keeping applications running to a
correct solution in a timely and efficient manner despite

underlying system faults

® System faults lead to failures, where the system provides
an incorrect service (e.g., crashes or provides wrong
answers)

® Resilience is a major roadblock for HPC executions on
future exascale systems

o These systems will typically gather millions of CPU cores running
up to a billion threads.

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

The Exascale Resilience Problem

® Hardware failures
o Expected to be more frequent
= Asystem 1,000 times more powerful will have at least 1,000 times
more components and will fail 1,000 times more frequently
® Software failures

o As hardware becomes more complex (heterogeneous cores, deep
memory hierarchies, complex topologies, etc.), system software
will become more complex and hence more error-prone

o Increase use of open source layers means less coordinated design
in software, which will increase the potential for software errors

o As per some research, large parallel jobs may fail as frequently as
once every 30 minutes on exascale platforms

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Approaches for Resilience (1/5)
® Checkpointing

o Rollback recovery approach using checkpoint/restart

o The programmer adds some specific functions in the application to save essential
state and restore from this state in case of failure
= Drawbacks

. Non-optimal placement of checkpointing code

o 1/O could become a bottleneck while writing large amount of intermediate
program state in the disk

o Checkpointing steps taken to avoid 10 latency

1. The checkpoint is first stored in local SSD (faster than disk). It supports process failure
but not node failure

2. Store the checkpointing in the remote SSD to support single node failure

3. Support multinode failure by breaking down the checkpointing into blocks and
distributing it to multiple nodes

4. Store the checkpointing in parallel file system to support catastrophic failures such as
full system outage

o Frequency (granularity) of checkpointing could control the latency

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 9

European MPI Users' Group Meeting
“ EuroMPI 2010: Recent Advances in the Message Passing Interface pp 219-228 | Cite as

Checkpoint/Restart-Enabled Parallel Download book PDF L
Debugglng Sections References . C h e C k p O I n t re St a r't
Joshua Hursey, Chris January, Mark O'Connor, Paul H. Hargrove, David Abstract

Lecomber, Jeffrey M. Squyres & Andrew Lumsdaine Pl a | S O u S e d fo r

Conference paper

538 fceses | Cistens s plomsin debugging parallel

Part of the Lecture Notes in Computer Science book series foltor ivonratin

(LNPSE volume 6305) Rights and permissions p ro g rams : b U t W h y?

Copyright information
Abstract

About this paper
Debugging is often the most time consuming part of software

development. HPC applications prolong the debugging
process by adding more processes interacting in dynamic
ways for longer periods of time. Checkpoint/restart-enabled
parallel debugging returns the developer to an intermediate
state closer to the bug. This focuses the debugging process,
saving developers considerable amounts of time, but requires
parallel debuggers cooperating with MPI implementations and
checkpointers. This paper presents a design specification for
such a cooperative relationship. Additionally, this paper
discusses the application of this design to the GDB and DDT
debuggers, Open MPI, and BLCR projects.

D

Lecture 21: Resilience in the Exascale Era

Approaches for Resilience (2/5)

® Forward recovery

o In some cases, the application can handle the error and execute
some actions to terminate cleanly or follow some specific recovery
procedure without relying on classic rollback recovery

= Any example?
= You can correlate it with handlinﬁ]some chec_ke_d-t){]pe exceptions in Java
(e.g., IOException, etc.), where the checkﬁomtmg appens inside the

exception handler code (finally block) so that the application can be
restarted at the same stage by fixing the IOException

. If there is no support for checkpoint/restart, the long running application must
be restarted from the beginning!

o A prerequisite for rollforward recovery is that some application
processes and the runtime environment stay alive

= In the above example, the JVM could stay alive to complete the
checkpointing upon faliure

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Approaches for Resilience (3/5)

® Replication

O

O
O

Each process is replicated such that the probability that all replicas
would fail is acceptably small

Replicas of a process are assigned to different computers

They proceed asynchronously with the same code and data such
that they can be viewed as an integrated logical entity by others

A distributed computation should proceed correctly as long as
there exists one living replica for each process.
Drawback
= Amount of computational resources is a major challenge
Usually double the number of resources actually required by the program

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 12

Lecture 21: Resilience in the Exascale Era

Approaches for Resilience (4/5)

® Failure prediction

o Draw conclusions about upcoming failures from the occurrence of
previous failures

= Measure the system behaviour using hardware metrics, and compare
it to the expected normal behaviour using some machine learning
algorithms

= Some errors can be predicted by their side-effects on the system
such as exceptional memory usage, CPU load, disk /O, or unusual
function calls in the system
» Periodically measure such system in order to identify an imminent failure

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 13

Silent Data CorruPtion Likely to be the most important type
of fault in the exascale systems

“When data corruption goes undetected, SDC events may occur more

it becomes silent and is a high risk for
a p pl i Cat i O n S" EnterpriseStorageForum.com

Data corruption

Detected Undetected

Uncorrected I .
Silent Data

Corruption

Corrected

Block sizes for illustrative purposes only. Does not
correlate to frequency of occurrence.

See appendix for footnote 1

frequently than perceived

R drives per 1000 can
m experience SDCina
year’

catastrophic storage
upto 1 0% system failures have
been linked to SDC

Ilntel Non-Volatile Memory Solutions Group

Silent Data Corruption has two main external causes

Cosmic Rays

1. Protons and heavy
ions originate from
the sun and stars

2. They interact with
atmosphere creating
neutrons

3. Neutrons multiply
quickly in a cascading
reaction

4. At earths surface, ~10 neutrons/sec. pass
through a person

Intel Non-Volatile Memory Solutions Group

Alpha particles
Package
" internal .
. osources 4 BUMREIySE
) A
Back-end
o L B T ey Y layers
e e T | Front-end
v layers

1. Trace radioactive elements exist in some materials

2. Even pure leads can generate 1 particle/cm?/khr.

Lecture 21: Resilience in the Exascale Era

Approaches for Resilience (5/5)

® Mitigating Silent Data Corruption (SDC) or Soft Errors

o Industry-wide hardware issue impacting computer CPUs

o An SDC occurs when an impacted CPU inadvertently causes errors
In the data it processes

» For example, an impacted CPU might miscalculate data (i.e., 1+1=3)
due to manufacturing defects
 The transistors are so tiny that small electrical fluctuations can cause errors

o Online solutions to test a new processor
= https://github.com/google/cpu-check

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 16

https://github.com/google/cpu-check

o cwrtelecnmesaess
Today’s Class

® Exascale computing
® Approaches for resilience
=>® Runtime solutions for resilient task-parallel programs

D

O certteecmesmeess
Checkpoint Restart in OmpSs

Regular version

-Satisfy dependences and wait
for resources availability
-Run*

y ™

Task instance

Inputs, inouts, outputs

statements

=
O
-—
-3
O
7}
x
w

Checkpoint Restart version

- Satisfy dependences and wait for resources
availability

- Checkpoint inputs, inouts to checkpoint structure 0 m pS S
-do{

if(fail) Restore checkpoint structure iS a tas k
Run*;
} while (Non-deterministic fail) based
/ Task instance \ p rog ram m i n g
model based

Inputs, inouts, outputs

Execution

s, o, ot
B, on OpenMP

statements

Execution

Lecture 21: Resilience in the Exascale Era

Resilience using HCIib

® Support resilience using promises and futures

o Replication

o Checkpoint and restart

o Forward recovery (algorithm based fault tolerance)

E CSE513: Parallel Runtimes for Modern Processors

© Vivek Kumar

19

Lecture 21: Resilience in the Exascale Era

16

Resilience using HCIlib 7 <o ¢

1 auto vall_dep = new promise(); L vaad, = get_salueivall. dep)s
2 12 4 _) 0O - 20 val2 = get_value(val2_dep);
auto val2_dep = new prorplse ’ 2. res = new value(op(vall, val2));
3 auto res_dep = new promise(); 29 res_dep->put (res) ;
1 23 }, vall_dep->get_future()
5 void read_first_val() { 24 , wval2_dep->get_future());//async
6 async([=] { 25 }
7 vall = new value(get_val_from_src()); 26
8 vall_dep->put (vall); 27 void print_re.sult() {
9 }); // async 28 async_await ([=] {
10 29 res =(get5value(res_dep);
. 30 print (res);
11 void read_second_val() { Sl }, res_dep->get_future()); // async
12 async ([=] { 32 1}
13 val2 = new value(get_val_from_src()); Task Creation
14 val2_dep->put(val2) ; Satisfying a promise
15 ¥y 4/ ssyne Waiting on a promise

® A baseline non-resilient task parallel program to perform an
operation on two asynchronously generated values

o How to implement the above programming model in the runtime?

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 20

Lecture 21: Resilience in the Exascale Era

o _ . ® Resilient task-parallel program
Resilience using HCIlib based on replication to perform an
1, il AR~ AR operation on two asynchronously
2 generated values
3 void operation_val() {
4 replication::async_await_check ([=] { ® Replicate the task and check for
5 vall = get_value(vall_dep); \ .
6 val2 = get_value(val2_dep); equality of put operations at the end
T res = new value(op(vall, val2)); Of the task
8 res_dep->put (res) _ _ _
9 }, err_dep o User required to provide equality
10 vall_dep->get_future(), Fork checking operator for each datatype T
11 val2_dep->get_future());//async used in the promise<T>
12 } ,
13 . - o err_dep promise tells whether a majority
14 void print_result() { of replicas produced the same output
15 async_await ([=] {
16 recoverable = get_value(lerr_dep Join @ If error checking succeeds, actual
1 if (recoverable == 0) exit(1l);
18 res = get_value(res_dep); pUtS are performed
19 print (res); . .
20 }, res_dep->get_future(), ® If error checking fails, puts are
2L Rt SmmeOX AR ignored and the error is reported
using an output promise
The task replication construct
A promise with a failure status
“E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 21

Lecture 21: Resilience in the Exascale Era

Resilience using I:ICIib

Resilient task-parallel program based

-
™ N
o ©

void operation_val() {
replay: :async_await_check} ([=]{

T T e by | on replay to perform an operation on

3 else return false; two asynchronously generated values
4 } .

5 Instead of applying a rollback of the

6 auto err_dep = new promise(); entire program, as few as one tasks
 ESIRCL iR are replayed when an error is detected

The task is replayed (up to N times) on
the original input’if its execution

% | vall = get_value(vall_dep); |

12 val2 = get_value(val2_dep); resulted in some errors

13 res = new value(op(vall, val2)); .

14 res_dep->put (res); Programmer needs to provide an error
[0 TEEEEENN - TSy pEmmme checking function so that the runtime
17 Sy e e TR - can use it to check for errors
TR R The programmer needs to fill the data

The task replay construct
User-defined error checking function
Arguments to the error checking

ﬂ CSE513: Parallel Runtimes for Modern Processors

gchk_da a) that needs to be checked
or errors using the error checking
function (err_chk_func)

© Vivek Kumar 22

et ResleneinteaseeEe
Have we ever discussed any FT technique?

® Recall trace/replay?

o Could be used for achieving resilience
= How?
o lIs it coarse granular or fine granular approach?

D

Lecture 21: Resilience in the Exascale Era

Reference Materials

® [owards exascale resilience
o http://snir.cs.illinois.edu/listed/J53.pdf

® Enabling resilience in asynchronous many-task
programming models
o https://www.osti.gov/servilets/purl/1641008

® Exascale vision of India

o https://amritmahotsav.neqd.in/presentation/days/Exa-
scale%20Vision%200f%20India.pdf

® Silent data corruptions at scale
o https://arxiv.org/pdf/2102.11245.pdf

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

24

http://snir.cs.illinois.edu/listed/J53.pdf
https://www.osti.gov/servlets/purl/1641008
https://amritmahotsav.negd.in/presentation/day5/Exa-scale%20Vision%20of%20India.pdf
https://arxiv.org/pdf/2102.11245.pdf

o
Next Lecture

® Data race detection

® Quiz-4
o Syllabus: entire course

D

