
CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the 
Exascale Era

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Last Lecture (Recap)
● False sharing
● Runtime solutions for detecting/repairing false sharing

1



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Today’s Class
● Exascale computing
● Approaches for resilience
● Runtime solutions for resilient task-parallel programs

2



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

What is Exascale Computing Project?
● When we say the Exascale Computing Project – what 

comes to mind?
o Hardware / systems / platforms?
o Software / software stack?
o Applications?

● If you were thinking “all the above” – you were right

3



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Achieving capable exascale computing
● Support applications solving science problems 50× faster or more complex 

than today’s 20 PF systems

● Operate in a power envelope of 20–30 MW

● Be sufficiently resilient (average fault rate no worse than weekly)

● At least two diverse system architectures

● Possess a software stack that meets the needs of a broad spectrum of 
applications

● A holistic project approach is needed that uses co-design to develop new 
platform, software, and computational science capabilities at heretofore 
unseen scale
o Essential for tackling much deeper challenges than those that can be solved by 

hardware scale alone

4Slide source: Paul Messina, CHEP 2016 

https://indico.cern.ch/event/505613/contributions/2314342/attachments/1352148/2041459/Messina.ECP.CHEP_2016-10-10.final.pptx


CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Key Challenges for Exascale
● Parallelism

o Main highlight of this course
● Memory and Storage 

o We covered NUMA and locality in context of the memory, but we 
are not covering storage in this course

●Reliability
● Energy Consumption

o Covered in lectures 17 and 18

5



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Today’s Class
● Exascale computing
● Approaches for resilience
● Runtime solutions for resilient task-parallel programs

6



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Resilience
● It is the techniques for keeping applications running to a 

correct solution in a timely and efficient manner despite 
underlying system faults

● System faults lead to failures, where the system provides 
an incorrect service (e.g., crashes or provides wrong 
answers)

● Resilience is a major roadblock for HPC executions on 
future exascale systems
o These systems will typically gather millions of CPU cores running 

up to a billion threads. 

7



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

The Exascale Resilience Problem
● Hardware failures

o Expected to be more frequent
§ A system 1,000 times more powerful will have at least 1,000 times 

more components and will fail 1,000 times more frequently 

● Software failures
o As hardware becomes more complex (heterogeneous cores, deep 

memory hierarchies, complex topologies, etc.), system software 
will become more complex and hence more error-prone 

o Increase use of open source layers means less coordinated design 
in software, which will increase the potential for software errors 

o As per some research, large parallel jobs may fail as frequently as 
once every 30 minutes on exascale platforms 

8



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Approaches for Resilience (1/5)
● Checkpointing

o Rollback recovery approach using checkpoint/restart 
o The programmer adds some specific functions in the application to save essential 

state and restore from this state in case of failure 
§ Drawbacks 

• Non-optimal placement of checkpointing code 
o I/O could become a bottleneck while writing large amount of intermediate 

program state in the disk
o Checkpointing steps taken to avoid IO latency

1. The checkpoint is first stored in local SSD (faster than disk). It supports process failure 
but not node failure

2. Store the checkpointing in the remote SSD to support single node failure
3. Support multinode failure by breaking down the checkpointing into blocks and 

distributing it to multiple nodes
4. Store the checkpointing in parallel file system to support catastrophic failures such as 

full system outage
o Frequency (granularity) of checkpointing could control the latency

9



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

10

● Checkpoint restart 
also used for 
debugging parallel 
programs, but why?



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Approaches for Resilience (2/5)
● Forward recovery

o In some cases, the application can handle the error and execute 
some actions to terminate cleanly or follow some specific recovery 
procedure without relying on classic rollback recovery
§ Any example?
§ You can correlate it with handling some checked-type exceptions in Java 

(e.g., IOException, etc.), where the checkpointing happens inside the 
exception handler code (finally block) so that the application can be 
restarted at the same stage by fixing the IOException
• If there is no support for checkpoint/restart, the long running application must 

be restarted from the beginning!
o A prerequisite for rollforward recovery is that some application 

processes and the runtime environment stay alive
§ In the above example, the JVM could stay alive to complete the 

checkpointing upon faliure

11



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Approaches for Resilience (3/5)
● Replication

o Each process is replicated such that the probability that all replicas 
would fail is acceptably small

o Replicas of a process are assigned to different computers
o They proceed asynchronously with the same code and data such 

that they can be viewed as an integrated logical entity by others
o A distributed computation should proceed correctly as long as 

there exists one living replica for each process.
o Drawback

§ Amount of computational resources is a major challenge
• Usually double the number of resources actually required by the program

12



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Approaches for Resilience (4/5)
● Failure prediction

o Draw conclusions about upcoming failures from the occurrence of 
previous failures
§ Measure the system behaviour using hardware metrics, and compare 

it to the expected normal behaviour using some machine learning 
algorithms

§ Some errors can be predicted by their side-effects on the system 
such as exceptional memory usage, CPU load, disk I/O, or unusual 
function calls in the system
• Periodically measure such system in order to identify an imminent failure

13



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

14

Likely to be the most important type 
of fault in the exascale systems



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

15



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Approaches for Resilience (5/5)
● Mitigating Silent Data Corruption (SDC) or Soft Errors

o Industry-wide hardware issue impacting computer CPUs
o An SDC occurs when an impacted CPU inadvertently causes errors 

in the data it processes
§ For example, an impacted CPU might miscalculate data (i.e., 1+1=3) 

due to manufacturing defects
• The transistors are so tiny that small electrical fluctuations can cause errors

o Online solutions to test a new processor
§ https://github.com/google/cpu-check

16

https://github.com/google/cpu-check


CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Today’s Class
● Exascale computing
● Approaches for resilience
● Runtime solutions for resilient task-parallel programs

17



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

18

OmpSs
is a task 
based 

programming 
model based 
on OpenMP

Checkpoint Restart in OmpSs



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Resilience using HClib
● Support resilience using promises and futures

o Replication
o Checkpoint and restart
o Forward recovery (algorithm based fault tolerance)

19



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Resilience using HClib

● A baseline non-resilient task parallel program to perform an 
operation on two asynchronously generated values 
o How to implement the above programming model in the runtime?

20



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Resilience using HClib

21

● Resilient task-parallel program 
based on replication to perform an 
operation on two asynchronously 
generated values 

● Replicate the task and check for 
equality of put operations at the end 
of the task
o User required to provide equality 

checking operator for each datatype T 
used in the promise<T>

o err_dep promise tells whether a majority 
of replicas produced the same output

● If error checking succeeds, actual 
puts are performed

● If error checking fails, puts are 
ignored and the error is reported 
using an output promise



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Resilience using HClib
● Resilient task-parallel program based 

on replay to perform an operation on 
two asynchronously generated values

● Instead of applying a rollback of the 
entire program, as few as one tasks 
are replayed when an error is detected

● The task is replayed (up to N times) on 
the original input if its execution 
resulted in some errors

● Programmer needs to provide an error 
checking function so that the runtime 
can use it to check for errors

● The programmer needs to fill the data 
(chk_data) that needs to be checked 
for errors using the error checking 
function (err_chk_func)

22



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Have we ever discussed any FT technique?
● Recall trace/replay?

o Could be used for achieving resilience
§ How?

o Is it coarse granular or fine granular approach?

23



CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Reference Materials
● Towards exascale resilience

o http://snir.cs.illinois.edu/listed/J53.pdf
● Enabling resilience in asynchronous many-task 

programming models
o https://www.osti.gov/servlets/purl/1641008

● Exascale vision of India
o https://amritmahotsav.negd.in/presentation/day5/Exa-

scale%20Vision%20of%20India.pdf
● Silent data corruptions at scale

o https://arxiv.org/pdf/2102.11245.pdf

24

http://snir.cs.illinois.edu/listed/J53.pdf
https://www.osti.gov/servlets/purl/1641008
https://amritmahotsav.negd.in/presentation/day5/Exa-scale%20Vision%20of%20India.pdf
https://arxiv.org/pdf/2102.11245.pdf


CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 21: Resilience in the Exascale Era

Next Lecture
● Data race detection
● Quiz-4

o Syllabus: entire course

25


