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® Symmetric multicores e s
o Speedup(f, R, N) =1/ ({(1-f)/Perfz} + {f / (Perfz*(N / R))} )
® Asymmetric multicore
o Speedup(f, Rg, N)=1/({(1-f)/ Perf(Rg)} + {f / ( Perf(Rg) + N -Rg) } )
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Today’s Class

=>@® Exascale computing
® Approaches for resilience
® Runtime solutions for resilient task-parallel programs
® Quiz-5 (Last one!)
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Exascale Computing

Rank System Cores (PFlop/s) (PFlop/s)

1 El Capitan - HPE Cray EX255a, AMD 4th Gen EPYC 24C 11,039,616 1,742.00 2,746.38
1.8GHz, AMD Instinct MI300A, Slingshot-11, TOSS, HPE
DOE/NNSA/LLNL

United States

(kW)

29,581

2 Frontier - HPE Cray EX235a, AMD Optimized 3rd 9,066,176 1,353.00 2,055.72 24,607
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE Cray 0S, HPE
DOE/SC/0ak Ridge National Laboratory
United States First exascale supercomputer (June 2022)
3 Aurora - HPE Cray EX - Intel Exascale Compute Blade, 9,264,128 1,012.00 1,980.01 38,698

Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU
Max, Slingshot-11, Intel

DOE/SC/Argonne National Laboratory

United States
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“APU” — CPU and GPU share the
memory / LLC. Total 4 APUs/node

with each APU having 24 CPU
cores and one GPU

Each node with 64 CPU cores
and 4 GPUs

Each node with two CPU
sockets and six Intel GPUs.
Total 40 Cores / Socket
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Key Challenges for Exascale

® Parallelism
o Covered in depth in first half of this course

o Goal: Support applications solving science problems 50x faster or more
complex than today’s 20 PF systems

® NMemory and Storage

o We covered NUMA and locality in context of the memory, but we are not
covering storage in this course

o Goal: Reduce memory access latency and support locality over deep memory
hierarchies

® Energy Consumption
o Covered in lectures 18 and 21
o Goal: Operate in a power envelope of 20-30 MW

® Reliability

o Goal: Be sufficiently resilient (average fault rate no worse than weekly)
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Lecture 22: Resilience in the Exascale Era

Resilience

® It is the technique for keeping applications running to a
correct solution in a timely and efficient manner despite
underlying system faults

o Exascale systems are 1,000 times more powerful will have at least
1,000 times more components and will fail 1,000 times more

frequently
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Lecture 22: Resilience in the Exascale Era

Approaches for Resilience (1/5)

® Checkpointing
o Rollback recovery approach using checkpoint/restart
o The programmer adds some specific functions in the application to
save essential state and restore from this state in case of failure

o Drawback:
= Amount of data/space needed for saving intermediate state
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Lecture 22: Resilience in the Exascale Era

Approaches for Resilience (2/5)

® Forward recovery

o In some cases, the application can handle the error and execute
some actions to terminate cleanly or follow some specific recovery
procedure without relying on classic rollback recovery

= Any example?
. do {
try {

} catch (IOException e) {
[* Take action to overcome the error and continue */
}

} while(condition not met);

o Drawback: A prerequisite for rollforward recovery is that some
application processes and the runtime environmeént stay alive

= |n the above example, the JVM could stay alive to complete the
checkpointing upon faliure
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Lecture 22: Resilience in the Exascale Era

Approaches for Resilience (3/5)

® Replication

o Each process is replicated such that the probability that all replicas
would fail is acceptably small

o Replicas of a process are assigned to different computers

o They proceed asynchronously with the same code and data such
that they can be viewed as an integrated logical entity by others

o Drawback

=  Amount of computational resources is a major challenge
Usually double the number of resources actually required by the program

E CSEb513: Parallel Runtimes for Modern Processors © Vivek Kumar 12




Lecture 22: Resilience in the Exascale Era

Approaches for Resilience (4/5)

® Failure prediction

o Draw conclusions about upcoming failures from the occurrence of
previous failures

= Measure the system behaviour using hardware metrics, and compare
it to the expected normal behaviour using some machine learning
algorithms

«  Some errors can be predicted by their side-effects on the system such as
exceptional memory usage, CPU load, disk I/O, or unusual function calls
in the system

«  Periodically measure such system in order to identify an imminent failure

= Drawback
 Requires some offline training runs
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Lecture 22: Resilience in the Exascale Era

Approaches for Resilience (5/5)

® Mitigating Silent Data Corruption (SDC) or Soft Errors

o Industry-wide hardware issue impacting computer CPUs
o An SDC occurs when an impacted CPU inadvertently causes errors
In the data it processes

= For example, an impacted CPU might miscalculate data (i.e., 1+1=3)
due to manufacturing defects

The transistors are so tiny that small electrical fluctuations can cause errors
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Lecture 22: Resilience in the Exascale Era

Resilience inside Task-based Runtimes

® Use futures and promises

Whenever future object gets
satisfied (written by an async)
then it can be checkpointed

For mitigating SDC, spawn an
async multiple times and verify if
the resultant future object from
each async has exact same result
= Programmer needs to provide an
error checking function so that

the runtime can use it to check
for errors

Trace and replay

int i=0;

if (checkpoint exists) {
load_checkpoint();
| = get_iteration();

}

for(; i<MAX; i++) {
quill::start_tracing();
Il future objects
computation_kernel_using_async_finish();
quill::stop_tracing();
I/l Save trace data and resultant future objects
quill::checkpoint();

} 4
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Reference Materials

® Jowards exascale resilience
o http://snir.cs.illinois.edu/listed/J53.pdf

® Enabling resilience in asynchronous many-task programming models
o https://www.osti.gov/serviets/purl/1641008

® Exascale vision of India

o https://amritmahotsav.negd.in/presentation/day5/Exa-
scale%20Vision%200f%20India.pdf

® Silent data corruptions at scale
o https://arxiv.org/pdf/2102.11245.pdf

® Support for Resiliency in HCIlib
o https://www.osti.qov/servilets/purl/1641008
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Next Lecture

® End semester review
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