Lecture 23: End Semester Review

Vivek Kumar
Computer Science and Engineering
IIIT Delhi
vivekk@iiitd.ac.in

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

L T
Today’s Class

® End semester review
® Quiz-4

D

o GommeseRee
SIMD Vector Units (1/2)

[(TII] L ® Special registers that support instructions
|l,gLI'J]‘ALUHALU”ALU| to operate upon vectors than scalar
values

® Each core can operate on more than one

SIMD operation on

vectors 32-bit value in each cycle

Lecture 23: End Semester Review

SIMD Vector Units (2/2)

20 Vo10 mul vector () Matrix Multiplication
Z; //initialize USIHg VCL

for(int i=0; i<size; i++) {
43 Vec8f _A(1.0f);
44 Vec8f _B(1.0f);
A Vec8f _C(9);
46 for(int j=0; j<size; j+=VECTOR_WIDTH) {
47 _A.store(8A[iksize+j]);
48 _B.store(&B[ixsize+j]);
49 _C.store(&C[iksize+j]);
50 }
51 }
52
53 for(int i=0; i<size; i++) {
54 for(int k=0; k<size; k++) {
55 Vec8f _A = A[iksize + k];
56 for(int j=0; j<size; j+=8) {
57 // Cliksize+j] = A[iksize+k] * B[kksize+j] + C[iksize+j];
58 Vec8f _B = Vec8f().load(&B[kksize + jl);
59 Vec8f _C = Vec8f().load(&C[iksize + jl);
60 _C=_A% B + _C;
61 _C.store(&C[ixsize + j1); Alternative approach for loading
62 }
63 }
64 }

65 |

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 3

for(int i=0; i<size; i++) {
for(int k=0; k<size; k++) {
VEC_Xf _A = A[iksize + k];
VEC_Xf _B, _C;
for(int j=0; j<size; j+=VECTOR_WIDTH) {

B.load(&B[kksize + j1);

(c.1oad(&Cliksize + 1);
C=_AxB + _C;
_C.store(&C[ikxsize + j1);

GPU Computing using

| DRAM |

boost::compute P

intx a = OB
= my_svm: :alloc<int>(context, size);

intx b
intk ¢ = my_svm::alloc<int>(context, size); Thread | [Thread Thread| | Thread
std::fill(a, a+size, 1); State || State State || State
std::fill(b, b+size, 2); 2 e e e
std::fill(c, c+size, 0);

for(int i=0; i<size; i++) assert(alil] 1);
for(int i=0; i<size; i++) assert(b[i] 2);

// source code for the add kernel ® Multicore processors are latency
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(orlented, whereas GPUs are

__kernel void add(__global const int x*a, I
e Const ne throughput oriented
__global int *c) .
: ® Steps for using Intel SVM based
const uint i = get_global_id(9); . I
pertilor it boost::compute programming
) } o Create a context and device queue
// create the program with the source o Create programs to execute on the
compute: :program program = compute::program::build_with_source(source, context); CBF)LJ
// create the kernel
compute: :kernel kernel(program, "add"); o Allocate SVM memory on the hOSt
// set the kernel arguments as it is also accessible by the GPU
iy iy ot Mg L o Select the GPU kernel and set its
kernel.set_arg_svm_ptr(2, c); arguments
// run the add kernel i
. o Provide kernel to the command
timer::kernel("GPU kernel", [&I() { .
queue.enqueue_1d_range_kernel(kernel, @, size, vector_width); queue for execution

queue.finish();
1)
time_gpu+=timer: :duration();

) CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 4

o Free the SVM memory

Heterogeneous Computing (1/2)

® Amdahl’s law for symmetric multicores
o Serial fraction of the program would run on a
single core with performance as:
= (1-f) / Perfg

Perfy is the performance of each of the single core
of the processor type R shown below

o Parallel fraction use N/R cores at the rate
Perf(R) each

= f/(Perf(R) * (N/R)) = f*R / Perf(R)*N
Speedup(f, R, N) = 1/ ({(1-f)/Perf(R)} +
{f*R/(Perf(R)*N)})

e

FEEl=

EEEE

EEEE

EEEE
O

1P

o ommtesesetws
Heterogeneous Computing (2/2)

® Amdahl’'s law for asymmetric multicores
Rp=8 o Each processor is using the same number of total
resources (N=16)
= One Big core with Rg resources would leave N-Rg
resources for little cores
= Assuming each little core has R=1, total number of little
cores are N-Rg
o Serial fraction would still be represented as in symmetric
= (1) / Perf(Rg)
o Parallel fraction using one big core with Perf(Rg)

performance and N-Rg little cores with Perf(1)=1
performance would now be

= f/(Perf(Rg) + N — Rg)

o Speedup(f, Rg, N) = 1/ ({(1-f) / Perf(Rg)} + {f/(Perf(Rg) +
N —Rg)})

1D

Lecture 23: End Semester Review

Power Management

® P-states
o Dynamic Voltage and Frequency Scaling (DVFS) is used
(\ by the processor to operate the core at a specific
frequency and voltage

o Each P-states have an associated frequency

® (C-states

LLC o Power states used by the CPUs to reduce the power at
Core level or on a CPU Package Core level (core, private

[apl caches, etc.)

_ Uncore / o Core goes to sleep
n Used when some of the cores are not being used at all

Multicore Processor @ Uncore frequency scaling

o Changes the frequency of the uncore elements in the
processor

o Can be set in the userspace similar to DVFS
o Currently supported only by Intel processor

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 23: End Semester Review

Cache Coherence (1/3)

® Program order must be maintained at a single processor
o Aread by processor P to address X that follows a write by P to address X, should
return the value of the write by P
= Assuming no other processor wrote to X in between

® Write propagation to other processors

o Aread by processor P1 to address X that follows a write by processor P2 to X returns
the written value... if the read and write are “sufficiently separated” in time (store

buffers!)
= Assuming no other writes to X occurs in between

® Write serialization

o Writes to the same address are serialized: two writes to address X by any two
processors are observed in the same order by all processors

= E.g., if values 1 and then 2 are written to address X, no processor observes X having value
2 before value 1

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar

Lecture 23: End Semester Review

Cache Coherence (2/3)

PrRd /-
PrWr/-

(Modlﬁed)

PrWr/ BusRdX | * BusRd /flush

Prwr/
BusRdX

A !!ill -

()

PrRd/BusRd | prRd/-
BusRd / --

BusRdX / *
flush

BusRdX /-

® MSI protocol

o Alinein the M state can be modified without
notifying other caches
o Processor can only write to lines only in the M state

= |flineis not already exclusive in cache, cache
controller must first broadcast a read-exclusive
transaction to move the line into that state

. Required even if the line is in Shared state

o When other processor’s cache controller snoops a
read exclusive for a line it contains

= Must invalidate the line in its cache

= Because if it didn’t, then multiple caches will have
the same line

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 9

PrRd

Lecture 23: End Semester Review

Cache Coherence (3/3)

/-

PrWr/--

>
>

>
>

PrWr / BusRdX

PrWr/BusRdX

PrRd/BusRd

(no other cache
asserts shared)

PrRd/BusRd
(another cache
asserts shared)

M
(Modified)

+ BusRdX/ --
PrRd/--
BusRd/--

v e
R — | AR -
(Invalid) J<-------------

E CSE513: Parallel Runtimes for Modern Processors

'
€
'

i BusRdX/--

® MESI protocol

o Removes the
redundant BusRdX
when only one
cache holds a line
in S state and
wants to move it
iInto M state

Cache loads a line
directly into
Exclusive state
instead of Shared
state

BusRd /flush

BusRdX/ flush

© Vivek Kumar 10

o GommeseRee
False Sharing (1/3)

Task 1 Task 3
False
Sharing
Task 2 Task 4
Task 1
True
Sharing

Task 2

1P

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

o GommeseRee
False Sharing (2/3)

Core 1 Core 2

Thread 1 Thread 2

Invalidate

Cache

Main Memory

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

o ommtesesetws
False Sharing (3/3)

Core 1 Core 2

Thread 1 Thread 2

Invalidate

Cache

20X

Main Memory

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

Lecture 23: End Semester Review

Supporting Resilience
® Checkpointing

o Rollback recovery approach using checkpoint/restart

o The programmer adds some specific functions in the application to save
essential state and restore from this state in case of failure

o Hurts productivity and leads to I/O bottleneck

® Forward recovery

o Application can handle the error and execute some some specific recovery
procedure without relying on classic rollback recovery

® Replication

o Each process/thread/task is replicated such that the probability that all replicas
would fail is acceptably small

o Amount of computational resources is a major challenge

® Failure prediction

® Pr.law conclusions about upcoming failures from the occurrence of previous
ailures

E CSE513: Parallel Runtimes for Modern Processors © Vivek Kumar 14

e
Next Two Lectures

® Remaining two lectures will be student seminar

® Each project group will give a presentation as notified
earlier

D

