
Teaching High Productivity and High Performance
in an Introductory Parallel Programming Course

Vivek Kumar
IIIT Delhi, India

Abstract—Multicore processors are ubiquitous. Several prior
research has emphasized the need for high productivity parallel
programming models that require minimal changes to the se-
quential program and can still deliver high performance using
runtimes based approaches on various architectures. In this
paper, we present the structure and experience of teaching
the Foundations of Parallel Programming course (FPP) at IIIT
Delhi using a task-based parallel programming model, Habanero
C/C++ Library (HClib). FPP covers a wide breadth of topics in
parallel programming but emphasizes both high productivity and
high performance. It is being offered at IIIT Delhi in the spring
semester for undergraduate and postgraduate students since
2017. We describe our novel approach where the students start
the learning process using the traditional parallel programming
models, discover the underlying limitations, and build runtime
solutions to achieve high performance.

Index Terms—Education; Pedagogy; Task Parallelism; async-
finish Programming Model; Productivity; Performance; Work-
Stealing;

I. INTRODUCTION

Multicore processors are ubiquitous. It is an unavoidable
consequence of the breakdown of Dennard scaling, which has
put a stop to hardware delivering ever faster sequential perfor-
mance. Fugaku supercomputer that held on to the top spot in
the recent Top5001 consists of nodes with 48 cores/socket.
Unfortunately, software parallelism is often challenging to
identify and distribute, which means it is often hard to realize
the performance potential of modern processors. Common pro-
gramming models using threads impose significant complexity
to organize code into multiple threads of control and balance
work amongst threads to ensure effective utilization of multi-
ple cores. Existing HPC communication models (e.g., MPI [1])
also lack tight integration with multi-threaded programming
models (e.g., OpenMP [2]). It is difficult to identify and exploit
opportunities for computation-communication overlap in the
MPI+OpenMP programming model [3], often requiring overly
coarse or error-prone synchronization between the communi-
cation and multi-threaded components of applications.

The twin challenge of achieving both high productivity
and high performance has helped the evolution of several
Task-based Parallel Programming Models (henceforth men-
tioned as TPPM), such as Cilk [4], Java fork/join [5], Intel
TBB [6], Qthreads [7], Habanero-Java library [8], Habanero-
C/C++ library [9], X10 [10], Chapel [11], Legion [12],
Habanero-UPC++ [13], Kokkos [14], Raja [15], HPX [16],
and AsyncSHMEM [17]. TPPM improves the programmer’s

1https://www.top500.org/lists/top500/2021/06/

productivity, i.e., minimizes the effort required to convert a
serial application into a parallel application by offering a high-
level approach for introducing parallelism. TPPM supports the
creation of large numbers of lightweight tasks that can execute
in parallel over worker threads bound to processor cores.
While such programming models present a much higher-level
and more intuitive method for designing parallel algorithms,
especially for irregular and dynamic problems, they rely on
a work-stealing runtime [18] to deliver high performance by
dynamic load balancing of the tasks.

OpenMP and MPI have maintained their role in teaching
courses on parallel computing. However, with the abundance
of novel TPPM, TPPM has also made inroads in the sphere
of parallel computing courses. COMP322 from Rice Univer-
sity [19], [20] is one such course in this space that uses
Habanero-Java library (HJlib) for teaching the intellectual
challenges in parallel software by abstracting away the low-
level details of different parallel systems. This course is also
offered online on Coursera [21]. COMP322 uses HJlib as
a tool for teaching fundamental concepts in parallelism such
as parallel algorithms, dynamic task parallelism, critical path
length, parallel performance metrics, functional parallelism
with futures, loop parallelism, data races, deadlocks, map-
reduce, data-driven tasks, tasks with locality hints, etc. It also
covers the basics of MPI using OpenMPI Java [22]. Students
are graded in COMP322 based on homework assignments,
two exams, lab exercises, quizzes, and in-class worksheets.
The students can self-evaluate the homework and labs using a
web-based tool, Habanero Autograder [23].

COMP322 covers a wide breadth of topics in parallel pro-
gramming with a prime focus on high productivity. However,
it briefly touches upon runtime techniques for achieving high
performance. Also, although Java is a high-level programming
language, and it allows the portable execution of a single code
base across many different student laptops, it is still not a
mainstream programming language in the HPC community.
Apart from Fortran, C/C++ is the widely-used programming
language in HPC. It is evident from the fact that a majority
of the TPPM only supports C/C++ language [4], [6], [7], [9],
[12], [13], [14], [15], [16], [17].

This paper presents the design and implementation of an
introductory parallel programming course, Foundations of
Parallel Programming (FPP) [24], offered at IIIT Delhi for the
past five years for undergraduate and postgraduate students.
FPP builds upon COMP322 but focuses on both productivity
and performance. It uses HClib [9] as a teaching tool. HClib

1 int x, y;
2 finish([&]() {
3 async([&]() {
4 x = foo(n); //Task-1
5 });
6 y = bar(n); //Task-2
7 });
8 int z = baz(x+y); //Task-3

Fig. 1. An example code schema with async and finish

1 future_t<int>* f1 = async_future([=]() {
2 return foo(n); //Task-1
3 });
4 int y = bar(n); //Task-2
5 int z = baz(f1->get() + y); //Task-3

Fig. 2. An example code schema with futures

is a compiler-free C/C++ library that supports dynamic task
parallelism using C++11 lambda functions. FPP uses chaining
of assignments and course projects that teach students how to
build their own TPPM with an underlying high performance
runtime from scratch.

In the following sections, we detail several aspects of the
FPP course. We start our discussion with an introduction
to HClib in Section II. Section III presents the teaching
methodology and course topics. Section IV details the student
distribution in past offerings of FPP. Section V describes the
graded components. Section VI presents a summary of the stu-
dent feedback. Section VII lists out our experiences teaching
this course. Finally, Section VIII presents the conclusion.

II. HCLIB

This section provides a brief overview of the Habanero-
C/C++ library (HClib).

A. Support for multicore parallelism

HClib offers an async–finish programming model
for exploiting shared memory parallelism. These constructs
were first coined by the X10 language [10]. Now it has
been adopted by several other frameworks supporting task
parallelism [8], [25]. HClib is open-sourced [26] and was
developed at Rice University. HClib is a native library-
based implementation of the Habanero programming model
that offers C and C++ APIs. It provides high productivity in
writing async–finish programs by using C++11 lambda
functions in all its asynchronous APIs. C++11 lambdas avoid
the need for compiler support while still retaining the syntactic
convenience of language-based approaches.

Figure 1 shows a sample code written by using async–
finish APIs supported by HClib. The async API cre-
ates Task-1, which can run in parallel with the following
statements, i.e., Task-2. An async is a powerful primitive
because we can use it to enable any statement to execute as
a parallel task, including statement blocks, for-loop itera-
tions, and function calls. The finish is a generalized join
operation. Task-3 will never execute until both Task-1
and Task-2 have been completed. The power of these

1 promise_t<int> * p1 = new promise_t<int>();
2 async([=]() {
3 int x = foo(n); //Task-1
4 p1->put(x);
5 });
6 int y = bar(n); //Task-2
7 promise_t<int> * p2= new promise_t<int>();
8 async_await([=] { //Task-3
9 int z = baz(p1->get_future()->get() + y);

10 p2->put(z);
11 delete(p1);
12 }, p1->get_future());
13
14 foobar(p2->get_future()->get()); //Task-4
15 delete(p2);

Fig. 3. An example code schema with data-driven tasks

1 int array[x][y];
2 loop_domain_t loop={0, x, 1, tile};
3 forasync1D(&loop, [=](int i) {
4 foo(array[i]);
5 });

Fig. 4. An example code schema with loop-level parallelism

constructs comes from the ability to nest async and finish
arbitrarily. Figure 2 shows the same program but written using
async_future task. The program flow is the same as in
Figure 1. However, unlike the async, async_future can
return values. The get on the future object (f1) will block un-
til the async_future returns. Figure 3 is another variation
of the same program that uses futures, promises and data-
driven tasks (async_await). The async_await blocks
on the future p1->get_future(), and will be scheduled
only after p1->put() inside Task-1. Task-4 would block
on the execution of p2->get_future()->get(), until
p2->put() is called by Task-3.
forasync1D is an API supported by HClib for loop-

level parallelism. It recursively divides a for loop itera-
tions into two halves that can execute in parallel. Figure 4
shows a sample program written using forasync1D and
finish. Programmer can specify the tile for controlling
the task granularity in forasync1D. Figure 5 demonstrates
locality hints in asynchronous tasks (async_at_hpt) to
improve the temporal locality for array accesses during

1 int array[x][y];
2 int numPl=get_num_places(place_type_t::CACHE_PLACE);
3 place_t ** cachePl = new place_t*[numPl];
4 get_places(cachePl, place_type_t::CACHE_PLACE);
5 for (int iter=0; iter<X; iter++) {
6 finish([=]() {
7 for(int i=0; i<x; i++) {
8 int pl=(i%numPl);
9 async_at_hpt(cachePlaces[pl], [=]() {

10 foo(array[i]);
11 });
12 }
13 });
14 }
15 delete(cachePl);

Fig. 5. An example code schema for tasks with locality hints

Fig. 6. Work-stealing for load balancing of async–finish program

1 finish_spmd ([capture_list]() {
2 /* local asynchronous tasks */
3 async(...);
4 async_future(...);
5 async_await(...);
6 async_at_hpt(...);
7 forasync(...);
8 /* remote asynchronous tasks */
9 async_copy(...);

10 async_at(...);
11 });

Fig. 7. Asynchronous calls in HabaneroUPC++

parallel loop execution. The async_at_hpt API creates
an asynchronous task that is scheduled on a fixed worker
thread bounded to a core of the processor [27]. Iterative
execution of each task mapped to specific workers, thereby
improve the temporal locality for array accesses. HClib also
has experimental support for object-based isolation [28]. It
provides an API isolated(o1, o2, ..., lambda)
that allows the programmers to specify the list of objects
for which isolation is required during the execution of the
supplied lambda function. Any other TPPM except HJlib does
not support this feature.

B. Work-stealing for high performance

HClib internally uses a work-stealing runtime for dynamic
load-balancing of async–finish tasks. Figure 6 shows
the implementation of a work-stealing scheduler. It schedules
work exposed by the programmer, exploiting idle processors
and unburdening those that are overloaded. In work-stealing,
the worker (victim) executing the async in Figure 1 would
push Task-1 on its deque. It will then execute Task-2.
After completing the execution of Task-2, the worker will
reach the end finish scope, where it will try to pop
Task-1 from its deque. If any thief stole this task, the victim
would become a thief. Otherwise, it will pop and execute
Task-1 and then exit the finish scope.

C. Support for distributed parallelism

HClib is integrated with various HPC communication
libraries for supporting task parallelism at distributed scale.
HabaneroUPC++ is one such integration of HClib with

UPC++ [29]. It is a compiler-free PGAS library that sup-
ports a tighter integration of intra-place and inter-place par-
allelism than standard hybrid programming approaches [13].
The HabaneroUPC++ library implementation is based on
tight integration of the UPC++ library and HClib, with
new extensions to support the integration. Figure 7 shows
the APIs supported by HabaneroUPC++. It integrates the
benefit of HClib’s APIs in UPC++. Like UPC++, the
HabaneroUPC++ program also starts in an SPMD fashion,
with each place getting a copy of the main function.

III. TEACHING METHODOLOGY AND COURSE TOPICS

We have designed the FPP course, assuming that the
students registering for this course will not have any prior
experience with parallel programming. Although, they might
have written a simple program using Pthread APIs in their
operating systems course at the undergrad level. However, we
expect the students to have familiarity with any programming
language (Java / C / C++). Broadly, lecture contents in FPP
can be divided into three categories: a) multicore parallel pro-
gramming (70%), b) distributed parallel programming (20%),
and c) student-led research seminars (10%). These topics,
multicore and distributed parallel programming, first introduce
the students to the traditional approaches for parallel pro-
gramming, highlights the limitations in terms of productivity
and performance, and teaches task parallelism and runtime
techniques to overcome these shortcomings. Student seminars
are designed to nurture research interest and improve the
presentation skills of the students. As the access to the HPC
cluster is usually limited at several institutions, we give more
emphasis to multicore parallel programming in this course.
Due to this reason, we only cover the basics of distributed
parallel programming in FPP. It helps the students to rely on
their laptops (with the multicore processor) to cover the entire
course content.

Table III shows the details of lecture topics in the FPP
course. Several lecture topics in FPP related to task parallelism
in multicore parallel programming are borrowed from the
COMP322 course, but FPP uses HClib as a teaching tool
instead of HJlib in COMP322. FPP also borrows a few
other topics from other courses and online materials [32], [30],
[33], [31]. However, giving importance to both productivity
and performance is the key differentiating factor in the FPP
course. Using HClib as a teaching tool in FPP further helps
the students understand how to achieve high productivity in
parallel programming and what happens behind the scenes to
deliver high performance.

A. Topics on multicore parallel programming

FPP course starts with a refresher on Pthread programming,
reminding students that although Pthread programming is now
not mainstream, it is still the building block of all the TPPM.
FPP uses Pthread programs to demonstrate how difficult it is
to achieve productivity and performance using Pthreads [30].
After this, we introduce them to async–finish program-
ming in HClib and its support for serial elision. We then

Lecture topics Content Focus

Introduction to parallel programming Why multicore processors, refresher on Pthread programming [30],
concurrency decomposition [31] Productivity

Dynamic task parallelism [19] async-finish programming model, serial elision, computation graphs, ideal
parallelism, greedy scheduling of computation graphs on fixed number of cores Productivity

Design and implementation of thread pools Mapping async tasks to library-based thread pool runtime, work-sharing
and work-stealing scheduling, work-first and help-first work-stealing Performance

Loop level parallelism [19] Loop parallelism using forasync, divide-and-conquer
parallelism and its impact on critical path Productivity

Locality aware task parallelism Assigning task affinity using async at hpt,
design of hierarchical work-stealing, false sharing

Productivity
and

performance

Mutual exclusion Object-based isolation in HClib async-finish program
Productivity

and
performance

Functional parallelism [19] Futures, promises, data driven tasks using HClib Productivity

Cilk language and runtime [32] Terminally strict computation in async-finish v/s fully strict
computation in Cilk, cactus stack abstraction, inlet and abort Productivity

OpenMP parallel programming model [32], [33] Work-sharing constructs, task directives, data scoping,
comparison with async-finish programming model Productivity

Message Passing Interface [32] Point to point communication, collective communication,
hybrid parallelism using MPI+OpenMP Productivity

Distributed task parallelism
Challenges with MPI+OpenMP programming model, PGAS programming

using HabaneroUPC++, communication and computation
workers in work-stealing, distributed work-stealing

Productivity
and

performance
Research seminars Student led seminars on project work Performance

TABLE I
DETAILED DESCRIPTION OF LECTURE TOPICS IN FPP ALONG WITH THEIR FOCUS AREA

train them with the computation graphs. Students can use a
tool developed at IIIT Delhi to improve their understanding
by self-generating the computation graphs of async–finish
programs are written using HClib. Before introducing them
to any other tasking techniques, we discuss the design and
implementation of thread pools. We teach them how we can
map async tasks generated by the programmer to a thread
pool implementation. We discuss the implementation of both
work-stealing and work-sharing based thread pools and their
merits and demerits. After this, we teach them the rest of the
tasking techniques for multicore parallelism (forasync1D,
async_future, async_await, and async_at_hpt).
Introducing these topics after teaching thread pool helps them
understand how the runtime handles these tasks internally. As
locality aware tasks (async_at_hpt) are handled differ-
ently by the thread pool, we also teach them the design of
hierarchical work-stealing runtime in HClib. We introduce
them with mutual exclusion by using Pthread mutex locks
and demonstrate how difficult it is to avoid deadlocks in
async–finish programs using mutex locks. We use the
experimental support for object-based isolation in HClib to
teach how productivity and performance go hand in hand.
We conclude the topics on multicore parallel programming
by introducing the students with Cilk and OpenMP parallel
programming models and contrasting them with the HClib.

B. Topics on distributed parallel programming

We start this module by introducing the students to basic
topics in MPI, followed by the MPI+OpenMP hybrid program-
ming model. Here, we teach them the challenges in overlap-
ping computations and communication in MPI+OpenMP. It
serves as a motivation to introduce task parallelism even for

distributed computing. We use HabaneroUPC++ to teach the
basics of distributed task parallelism in PGAS using APIs such
as remote asynchronous tasks (async_at), remote asyn-
chronous copy (async_copy), locality free tasks that can
participate in distributed work-stealing (async_any) [34].
At the end of this module, we also briefly cover the design of
a distributed work-stealing runtime.

C. Student seminars

Here, the students present their course project, which is
essentially an implementation of a pre-published conference
paper related to work-stealing (details in Section V-D). These
seminars help improve student’s presentation skills by prepar-
ing slides and delivering the presentation in a conference-like
setting. We also organized a guest lecture from academia in
some of the FPP batches to motivate the students further to
pursue research.

IV. STUDENTS DISTRIBUTION

FPP course is being offered at IIIT Delhi to undergraduate
(B.Tech.) and postgraduate (M.Tech. and Ph.D.) students since
2017 (five batches till now). It was offered in online mode
in 2021 due to the Covid pandemic. Figure 8 shows the
student distribution over the past five batches. Postgraduate
students primarily consist of M.Tech students, and there has
been at most single Ph.D student in any batch. We saw
fewer registrations in 2021 (online mode), and it was limited
to undergraduate students. In its existing form, FPP is a
programming heavy course and is designed primarily to be
offered in classroom settings (offline mode). It has a project
component (Section V) where students work in pairs. Although
FPP has consistently received positive responses from the

Fig. 8. Student distribution over the years

students (Section VI), we believe students would face difficulty
if they had to take this course in its current form in an online
mode. For offering FPP in online mode, we can remove pair
programming based course projects and student seminars.

V. COURSE EVALUATION

We follow regular and frequent evaluations in FPP to give
students early feedback and judge their level of understanding.
FPP has several evaluation components, as mentioned below,
along with their weightage.

1) Labs (5%)
2) Quizzes (10%)
3) Take-home assignments (10%)
4) Course project (25%)
5) Midterm written exam (20%)
6) Endterm written exam (30%)
Below sections discusses these components in detail.

A. Labs

Labs in FPP are short programming exercises that the
student has to complete within 90 minutes in the presence
of TAs. These labs aim to give them hands-on experiences
with programming APIs taught in lectures. We conduct a total
of seven labs throughout the semester. Topics covered in these
labs are as mentioned below.

1) Pthread programming
2) async–finish and forasync1D using HClib
3) Locality using async_at_hpt in HClib, and remov-

ing false sharing
4) async_future tasks in HClib
5) Work-sharing pragmas in OpenMP
6) Tasking pragmas in OpenMP
7) Hybrid parallel programming using MPI+OpenMP
In each lab, we provide the student with a partially in-

complete program. Students have to add parallelism to this
program as per the supplied description. The maximum lines
of code they ever write are around 50 (lab topics 1 and 7).
The rest of the labs require even less coding. Hence, we give
only 5% weightage to labs. We chose the best five labs out of
seven for grading, where the student obtained the maximum

1 loop_domain_t loop={low, high, stride};
2 void parallel_for(&loop, int numThreads,
3 std::function<void(int)> &&lambda);

(a) One dimensional parallel_for

1 loop_domain_t loop_1={low1, high1, stride1};
2 loop_domain_t loop_2={low2, high2, stride2};
3 void parallel_for(&loop_1, &loop_2, int numThreads
4 std::function<void(int, int)> &&lambda);

(b) Two dimensional parallel_for

Fig. 9. StaMp APIs for parallelizing one and two dimensional for loops.
These APIs runs the loop body (lambda) in parallel by using ‘numThreads’
number of Pthreads

marks. They have to write their programs on IIIT Delhi’s
lab Desktops. Students are not allowed to access the internet
during lab time to avoid plagiarism. They have access to the
lecture materials during the labs.

B. Quizzes and term exams

Quizzes, midterm, and endterm exams are the three written
exams in the FPP course. Each of these is a closed-book exam.
FPP has a total of six quizzes, and they happen roughly after
every four lectures. Each quiz is of 20 minutes duration and
is scheduled during the lecture hours towards the end of the
lecture. The quiz consists of multiple-choice questions, fill
in the blanks, and reasoning based questions. Midterm and
endterm exams together have 50% weightage. These exams
include both theoretical and programming related questions.

C. Take-home assignments

The design of assignments and projects is a key factor in
differentiating FPP from other similar parallel programming
courses. As the motto of FPP is to teach both productivity
and performance, we have taken a novel approach to chain
assignments and projects in the FPP course. The output of
assignment-1 serves as the input of assignment-2. The output
of assignment-2 serves as an input for the project implemen-
tation.

1) Assignment-1: runtime for Static Mapping of tasks to
threads (StaMp): This is the first assignment in the FPP
course, and it is released in the second week of the course after
covering Pthread programming and introduction to async–
finish programming. This assignment aims to introduce
the importance of productivity in parallel programming. In
this assignment, students are asked to develop a shared library
to improve the productivity of the Pthread programmers by
abstracting away some of the basic programming efforts. The
StaMp is intended to help programmers in parallelizing for-
loop based algorithms, such as the addition of two vectors
and the multiplication of two matrices. The signature of the
linguistic interfaces for exposing in StaMp are as shown in
Figure 9. This assignment has a 3% weightage and a deadline
of four days.

2) Assignment-2: A light-weight work-stealing runtime for
async-finish parallelism (Cotton): This is the second and the
last assignment. It is released in the fourth week after teaching
the design and implementation of thread pools. It is a group
assignment where each group comprises a maximum of two

1 /* cotton APIs are declared here */
2 #include ‘‘cotton.h’’
3 int main(int argc, char** argv) {
4 /* initialize cotton runtime */
5 cotton::init_runtime();
6 int x;
7 /* start a flat-finish scope */
8 cotton::start_finish();
9 /* spawn an async */

10 cotton::async([&]() {
11 x = foo(n);
12 });
13 int y = bar(n);
14 /* end the flat-finish scope */
15 cotton::end_finish();
16 int result = x + y;
17 /* release runtime resources */
18 cotton::finalize_runtime();
19 return 0;
20 }

Fig. 10. Pseudocode of a parallel program written using Cotton

students. This assignment aims to teach both productivity and
performance. In this assignment, each group has to implement
a library-based new concurrency platform called Cotton. It
should support basic async–finish based task-parallelism
with flat finish scopes. We ask the students to implement
the Cotton runtime by reusing the code of StaMp runtime.
We don’t ask them to support nested finish scopes to avoid
complexities, but they should support nesting of async.
They should implement Cotton as a library-based thread pool
implementation that would use work-stealing for dynamic
task scheduling. We provide them with a recursive nqueens
program as a test case that uses Cotton APIs for achieving
parallelism. This assignment has 7% weightage and is given
a deadline of ten days.

D. Course project

The project in FPP is also a group activity similar to
assignment-2. Projects are released immediately after the
midterm exams. The projects are aimed to teach runtime
techniques for achieving high performance in TPPM. We
provide a set of pre-published conference papers related to
work-stealing runtimes and allow each group to choose a
research paper from these options. Some of the conference
papers that we have given in past as FPP course projects
are mentioned here: [35], [36], [37], [38], [39], [40]. The
course project has three milestones, spanning across the entire
semester post-midterm exam.

1) Milestone-1: In this milestone, each group has to demon-
strate their understanding of the project by submitting a
PowerPoint presentation. These slides have to be prepared so
that the student group is the original author of that paper, and
they have to use these slides for a conference presentation of
30 minutes. This milestone is of 5% weightage and is given a
deadline of two weeks. We choose one group in each project
category with the best slides and ask them to present their
slides as a student seminar during the lecture. Some extra
marks are awarded to these groups presenting the slides.

Fig. 11. Average marks distribution

2) Milestone-2: Each group has to turn in their in-progress
project implementation for this milestone. Students are asked
to implement their project in their Cotton runtime implemen-
tation (Section V-C2). This milestone is of 5% weightage and
is given a deadline of three weeks. Here, we judge the in-
progress implementation based on: a) designing all required
data structures and b) identifying all the required methods and
their interaction in work-stealing runtime.

3) Milestone-3: This is the last milestone where each group
has to submit the fully working implementation of their project
along with a report that: a) demonstrates the experimental
analysis of their project as per the original paper, but by
using a set of benchmarks provided by us, b) details the
challenges faced by the students during the implementation
(if any), and c) any novel research ideas. This milestone is of
15% weightage and is given a deadline of four weeks.

E. Grading summary

Figure 11 shows the average marks obtained by students in
each evaluation component over the years. This graph does not
include the data for the years 2017 and 2021. As FPP was a
newcomer in 2017, we kept the course components relatively
more straightforward and hence did not have labs, projects,
and assignments on StaMp and Cotton. In 2021 we had to
drop the project and endterm exam midway due to the raging
second Covid wave in Delhi.

From Figure 11, we can observe that the students scored
relatively higher in the programming based components. It
is because, for 32% weightage, students worked in groups
(assignment-2 and project). It helped them in clarifying their
doubts and resolving the bugs in their code much more
manageable. Lab questions are already designed so that they
are easy to score (Section V-A).

VI. STUDENT FEEDBACK

Student feedback is essential for the instructor to understand
the shortcomings in the course, improve the course quality,
and know if the course met the student’s expectations. IIIT
Delhi floats an anonymous feedback form to students towards
the end of a course, where the students have to provide a

Fig. 12. Student feedback on a scale of 1–5 (higher the better)

Fig. 13. Total number and percentage of students who participated in the
feedback shown in Figure 12

rating on a scale of 1–5 for various questions related to
the course. Figure 12 summarises the students feedback in
all five offerings of the FPP course, and Figure 13 shows
the total percentage of the students who participated in the
feedback. We can observe that a majority of the students
regularly attended the lectures. As FPP is a programming
heavy course, we can observe that the students had to put more
effort into this course. Despite this, consistently high ratings
for student’s understanding, course organization, and course
administration demonstrate that FPP successfully achieved its
goal of teaching high productivity and high performance in
parallel programming.

VII. DISCUSSION

In this section, we discuss the challenges faced while
teaching this course. As FPP is a programming heavy course
and requires programming in C/C+ on Linux, we found it
is essential to provide students with basic training on Unix
commands, shell scripting, and debugging C/C++ programs.
Hence, at the start of the FPP course, we conduct tutorials
on GDB where we teach them how to debug a multithreaded
program. We also ask the students to go through this online
course material [41]. We also gave tutorials on a version

control system (Git) and deducted a few marks during assign-
ment/project demos if we found the student not using version
control.

As we use chaining of assignments and projects in FPP,
it is crucial to help the students remove all the bugs in their
StaMp and Cotton runtimes before using them in the next
chain. We found that allowing the students to work in pairs
for the assignment on Cotton runtime was helpful as they could
resolve most of the bugs on their own. They usually don’t face
such issues in the first assignment as it is much simpler and
straightforward.

VIII. CONCLUSIONS

This paper presented the outline and methodology of the
Foundations of Parallel Programming (FPP) course taught at
IIIT Delhi for the past five years. We discussed that having a
blend of topics in productivity and performance differentiates
FPP from other existing courses on parallel programming. We
presented the novel technique of chaining assignments and
projects in the FPP course. It teaches students how to build
their own task-based parallel programming model and the
underlying load-balancing runtime from scratch. We hope that
this course makes an impact in teaching parallel programming
at other universities.

ACKNOWLEDGMENTS

The author is grateful to the instructors of the COMP322
course for sharing the course materials and to the Habanero
team [42], [43] for open-sourcing the HClib library. The
author is also thankful to the anonymous reviewers for their
suggestions on improving the presentation of the paper.

REFERENCES

[1] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-Lederman,
MPI: The Complete Reference, 1995.

[2] L. Dagum and R. Menon, “OpenMP: An industry-standard API for
shared-memory programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1,
pp. 46–55, Jan. 1998.

[3] S. Chatterjee, S. Tasırlar, Z. Budimlic, V. Cavé, M. Chabbi, M. Gross-
man, V. Sarkar, and Y. Yan, “Integrating asynchronous task parallelism
with MPI,” in 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing, 2013, pp. 712–725.

[4] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation
of the Cilk-5 multithreaded language,” in Proceedings of the ACM
SIGPLAN 1998 Conference on Programming Language Design and
Implementation, 1998, pp. 212–223.

[5] D. Lea, “A Java Fork/Join framework,” in Proceedings of the ACM 2000
Conference on Java Grande, 2000, p. 36–43.

[6] J. Reinders, Intel Threading Building Blocks, 1st ed. O’Reilly &
Associates, Inc., 2007.

[7] K. B. Wheeler, R. C. Murphy, and D. Thain, “Qthreads: An api for
programming with millions of lightweight threads,” in 2008 IEEE
International Symposium on Parallel and Distributed Processing, 2008,
pp. 1–8.

[8] S. Imam and V. Sarkar, “Habanero-java library: A Java 8 framework
for multicore programming,” in Proceedings of the 2014 International
Conference on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools, 2014, pp. 75–86.

[9] M. Grossman, V. Kumar, N. Vrvilo, Z. Budimlic, and V. Sarkar, “A
pluggable framework for composable hpc scheduling libraries,” in 2017
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2017, pp. 723–732.

[10] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An object-oriented
approach to non-uniform cluster computing,” in Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 2005, pp. 519–538.

[11] B. L. Chamberlain, D. Callahan, and H. P. Zima, “Parallel programma-
bility and the chapel language,” The International Journal of High
Performance Computing Applications, vol. 21, no. 3, pp. 291–312, 2007.

[12] E. Slaughter, W. Lee, S. Treichler, M. Bauer, and A. Aiken, “Regent: A
high-productivity programming language for hpc with logical regions,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’15, 2015.

[13] V. Kumar, Y. Zheng, V. Cavé, Z. Budimlić, and V. Sarkar, “Ha-
baneroUPC++: A compiler-free PGAS library,” in Proceedings of the
8th International Conference on Partitioned Global Address Space
Programming Models, 2014, pp. 5:1–5:10.

[14] H. Carter Edwards, C. R. Trott, and D. Sunderland, “Kokkos,” J. Parallel
Distrib. Comput., vol. 74, no. 12, p. 3202–3216, 2014.

[15] D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A. J.
Kunen, O. Pearce, P. Robinson, B. S. Ryujin, and T. R. Scogland,
“Raja: Portable performance for large-scale scientific applications,” in
2019 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), 2019, pp. 71–81.

[16] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey,
“HPX: A task based programming model in a global address space,” in
Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models, ser. PGAS ’14, 2014.

[17] M. Grossman, V. Kumar, Z. Budimlić, and V. Sarkar, “Integrating
asynchronous task parallelism with openshmem,” in Workshop on Open-
SHMEM and Related Technologies. Springer, 2016, pp. 3–17.

[18] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded com-
putations by work stealing,” J. ACM, vol. 46, no. 5, pp. 720–748, Sep.
1999.

[19] “COMP 322: Fundamentals of Parallel Programming,” 2014.
[Online]. Available: https://wiki.rice.edu/confluence/display/PARPROG/
COMP322

[20] M. Grossman, M. Aziz, H. Chi, A. Tibrewal, S. Imam, and V. Sarkar,
“Pedagogy and tools for teaching parallel computing at the sophomore
undergraduate level,” Journal of Parallel and Distributed Computing,
vol. 105, pp. 18–30, 2017, keeping up with Technology: Teaching
Parallel, Distributed and High-Performance Computing.

[21] V. Sarkar, M. Grossman, Z. Budimlić, and S. Imam, “Preparing an online
java parallel computing course,” in IPDPSW ’17, 2017, pp. 360–366.

[26] “HClib.” [Online]. Available: https://github.com/habanero-rice/hclib

[22] O. Vega-Gisbert, J. E. Roman, and J. M. Squyres, “Design and imple-
mentation of java bindings in open mpi,” Parallel Computing, vol. 59,
pp. 1–20, 2016.

[23] “An autograding framework for parallel JVM programs,” 2015.
[Online]. Available: https://github.com/agrippa/habanero-autograder

[24] V. Kumar, “Foundations of Parallel Programming.” [Online]. Available:
https://hipec.github.io/courses/fpp.html

[25] V. Kumar, D. Frampton, S. M. Blackburn, D. Grove, and O. Tardieu,
“Work-stealing without the baggage,” in OOPSLA ’12, 2012, pp. 297–
314.

[27] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar, “Hierarchical place trees:
A portable abstraction for task parallelism and data movement,” in
Languages and Compilers for Parallel Computing, 2010, pp. 172–187.

[28] J. Zhao, R. Lublinerman, Z. Budimlić, S. Chaudhuri, and V. Sarkar,
“Isolation for nested task parallelism,” in OOPSLA ’13, 2013, pp. 571–
588.

[29] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick, “UPC++:
a PGAS extension for C++,” in 2014 IEEE 28th International Parallel
and Distributed Processing Symposium, 2014, pp. 1105–1114.

[30] I.-T. A. Lee, “CSE 539: Concepts in Multicore Computing.” [Online].
Available: https://classes.engineering.wustl.edu/cse539/web/

[31] A. Grama, V. Kumar, A. Gupta, and G. Karypis, Introduction to parallel
computing. Pearson Education, 2003.

[32] V. Sarkar, “COMP422: Parallel Computing.” [Online]. Available:
https://www.cs.rice.edu/∼vs3/comp422/

[33] T. Mattson, A. Koniges, C. Breshears, and
J. Kemp, “Programming Irregular Applications with
OpenMP.” [Online]. Available: https://www.nersc.gov/assets/Uploads/
SC16-Programming-Irregular-Applications-with-OpenMP.pdf

[34] V. Kumar, K. Murthy, V. Sarkar, and Y. Zheng, “Optimized distributed
work-stealing,” in Workshop on Irregular Applications: Architectures
and Algorithms (IAAA), 2017, pp. 74–77.

[35] S. Shiina and K. Taura, “Almost deterministic work stealing,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019.

[36] S. Sridharan, G. Gupta, and G. S. Sohi, “Holistic run-time parallelism
management for time and energy efficiency,” in Proceedings of the
27th International ACM Conference on International Conference on
Supercomputing, 2013, p. 337–348.

[37] J. Lifflander, S. Krishnamoorthy, and L. V. Kale, “Steal tree: Low-
overhead tracing of work stealing schedulers,” in Proceedings of the
34th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2013, p. 507–518.

[38] U. A. Acar, A. Chargueraud, and M. Rainey, “Scheduling parallel
programs by work stealing with private deques,” in Proceedings of the
18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2013, p. 219–228.

[39] A. Tzannes, G. C. Caragea, R. Barua, and U. Vishkin, “Lazy binary-
splitting: A run-time adaptive work-stealing scheduler,” in Proceedings
of the 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2010, p. 179–190.

[40] A. Duran, J. Corbalan, and E. Ayguade, “An adaptive cut-off for task
parallelism,” in SC ’08: Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, 2008, pp. 1–11.

[41] MIT, “The Missing Semester of Your CS Education.” [Online].
Available: https://missing.csail.mit.edu/

[42] Rice University, “Habanero extreme scale software research project.”
[Online]. Available: http://habanero.rice.edu/

[43] Georgia Tech, “Habanero extreme scale software research lab.” [Online].
Available: https://habanero.cc.gatech.edu/

