
Energy Efficient Permanence-based Community
Detection Algorithm

Hardik Saini, Vivek Kumar, and Tanmoy Chakraborty

IIIT-Delhi, India

Abstract. Detecting an accurate community structure is a crucial task
in network analysis. With the increasing popularity of social network-
ing sites, it’s essential to have a community detection algorithm that
is not only efficient but also cost-effective for running in data centres.
There are several metrics for estimating the accuracy of community de-
tection. However, previous research [4] has shown that permanence, a
vertex-centric metric, provides the most precise estimate of a commu-
nity structure compared to other approaches. Despite this, no study has
been conducted on parallelizing a permanence-based community detec-
tion algorithm and analyzing its energy efficiency.
This paper introduces Amoeba, a task parallel implementation of a
permanence-based community detection algorithm designed for multi-
core processors. It uses dynamic tasking to schedule the inherent irreg-
ular computation, and it can dynamically adapt the total number of
parallel threads, which results in improved energy efficiency. We evalu-
ated Amoeba using several real-world and artificial graphs on a multicore
server processor. Our experimental results show that Amoeba achieves
a geometric mean speedup of 15.3× over its sequential implementation,
and due to thread adaptability, it achieves energy savings of 12.4% and
a speedup of 6% over its non-adaptive implementation.

Keywords: Community detection, Permanence, Task-parallelism, En-
ergy efficiency

1 Introduction

Complex systems such as social, biological and technological comprise entities/a-
gents and their interactions. These interactions often show non-trivial character-
istics such as structural homogeneity, indicating that nodes with similar proper-
ties interact more often than those with different properties. These interactions
lead to modular structures within the network, where similar nodes form dense
blocks known as communities. A community is a group of nodes that are closely
connected to each other internally and have sparse external connections. Com-
munity detection has been a significant area of research over the past two decades
due to the complexity and diversity of network structures. Most efficient methods
for community detection are built on optimizing specific objective functions such
as modularity [21], conductance [20], cut-ratio [18], and permanence [5]. Recent

research suggests that permanence is a superior metric for community detec-
tion [4]. MaxPerm [5] is an algorithm that aims to maximize the permanence
of disjoint communities. MaxPerm has emerged as the benchmark algorithm for
community detection, outperforming popular graph clustering methods such as
Louvain [2], Infomod [32], Infomap [33], and WalkTrap [24].

With the increasing popularity of social networking sites, the community de-
tection algorithm’s performance and energy efficiency are equally crucial as these
sites rely on large-scale data centres to compute the communities. Permanence
being a vertex-centric metric, it is a highly irregular computation as each vertex
can have a different amount of parallelism. Due to this reason, it is hard to esti-
mate the optimal thread count to compute the permanence of a given graph in
parallel. Having more threads than needed would lead to high energy utilization,
whereas fewer threads could inflate execution time. MaxPerm is a sequential al-
gorithm that computes the permanence of vertices one by one in every iteration.
This paper proposes a novel parallel algorithm for MaxPerm called Amoeba. It
uses dynamic task parallelism for load-balancing the irregular computation at
the vertices of a graph. Amoeba tweaks the original iterative MaxPerm imple-
mentation so that the vertex with higher parallelism is processed earlier in an
iteration than those with lesser parallelism. Amoeba then leverages this oppor-
tunity to adapt the total number of active threads participating in the parallel
computation. At the start of the iteration, it activates all the available threads as
the parallelism is at its maximum. As the parallelism decreases throughout the
remaining execution of the iteration, Amoeba periodically decreases or increases
the total number of active threads by monitoring the impact on energy utiliza-
tion. We choose a wide variety of synthetic and real-world graphs to evaluate
Amoeba’s accuracy, performance, and energy efficiency on a modern server-class
multicore processor with 64 hardware contexts. We show that Amoeba achieves
accuracy at par with the original sequential MaxPerm. Further, due to thread
adaptivity, Amoeba can outperform a non-adaptive parallel implementation in
terms of execution time and energy efficiency.

In summary, this paper makes the following contributions:

– Amoeba, a novel parallel algorithm for permanence maximization over mul-
ticore processors based on dynamic task parallelism.

– A portable implementation for dynamically changing the thread count based
on the available parallelism.

– Experimental evaluation of Amoeba on an AMD EPYC 7551 multicore pro-
cessor using four synthetic and six real-world graphs.

The rest of the paper is structured as follows. Section 2 provides the relevant
background. Section 3 discusses our evaluation methodology. Section 4 provides
the motivation for Amoeba. Section 5 explains the design and implementation of
Amoeba. Section 6 discusses the performance evaluation of Amoeba. Section 7
explains the related work, and finally, Section 8 concludes the paper.

2 Background

2.1 Permanence

Fig. 1. Toy example depicting permanence of a vertex v

Community detection algorithms, such as modularity or conductance, use
designated parameters to assign vertices to communities. However, these al-
gorithms will always produce a set of communities, even without an inherent
community structure. These algorithms primarily make a choice by arbitrarily
breaking ties. In contrast, permanence is a vertex-centric metric that encounters
fewer tie-breaking situations and considers the maximum number of external
connections to any neighbouring community when assigning vertices to commu-
nities. Permanence also takes into account the internal clustering coefficient to
determine how tightly connected vertices are within their assigned communities.
The internal connections of a community are generally considered together as a
whole. However, how strongly a vertex is connected to its internal neighbours can
differ. To measure this internal connectedness of a vertex, we compute the clus-
tering coefficient of the vertex with respect to its internal neighbours. The higher
this internal clustering coefficient, the more tightly the vertex is connected to its
community. The permanence of a vertex ranges from 1 (strongly connected) to
-1 (weakly connected or possibly wrongly assigned), with a value of 0 indicating
equal pull from neighbouring communities. The pull in the metric is modelled as
the maximum number of external connections to any neighbouring community.
The permanence of a network is the ratio of the sum of the permanence of all
vertices and the total number of vertices. It indicates to what extent, on average,
the vertices of a network are bound to their communities.

Perm(v) =
I(v)

Emax(v)︸ ︷︷ ︸
F1

× 1

D(v)︸ ︷︷ ︸
F2

− (1− Cin(v))︸ ︷︷ ︸
F3

(1)

Equation 1 is used to calculate the permanence of a vertex v. This calculation
takes into account several factors, such as I(v), which represents the total number

of internal connections of v, Emax(v), which is the maximum number of external
connections of v to any neighbouring community, D(v), which is the total degree
of v, and Cin(v), which represents the internal clustering coefficient of v. F1,
as part of Equation 1, ensures that the vertex v has more internal pull than
external pull, and is normalized by the total degree of v (F2) to ensure that
the product of F1 and F2 falls between 0 (no internal connections) and 1 (no
external connections). Additionally, within a specific community, the internal
neighbours of the vertex v should be highly connected (high internal clustering
coefficient). F3 imposes a penalty based on a low internal clustering coefficient,
ranging from 0 (no penalty) to 1 (maximum penalty). To illustrate this concept
further, Figure 1 shows a toy example for measuring the permanence of v.

2.2 Dynamic Task Parallelism

1 void MergeSort(int Low ,int High) {
2 if ((High - Low) < THRESHOLD) {
3 SequentialSort(Low , High);
4 return;
5 }
6 int Mid = (High + Low)/2;
7 finish([=]() {
8 async([=]() {

9 MergeSort(Low , Mid);
10 });
11 MergeSort(Mid , High);
12 });
13 Merge(Low , Mid , High);
14 }

(a) Parallel MergeSort using the
async–finish APIs

1 void VecorAddition(int Low , int High) {
2 finish([=]() {
3 forasync(Low , High , TILE , [=](int i) {

4 C[i] = A[i] + B[i];
5 });
6 });
7 }

(b) Parallel vector addition using the
forasync-finish APIs

Fig. 2. Examples to demonstrate the task-based parallel programming model by using
the HClib APIs

This section provides an overview of the Dynamic Task Parallelism (DTP)
and Habanero C/C++ Library (HClib) [13] used in this paper for the implemen-
tation of Amoeba. In DTP, a programmer explicitly exposes the parallelism in
the form of tasks that can execute independently. An underlying work-stealing
runtime then schedules these tasks across the hardware, keeping idle hardware
busy while relieving the overloaded hardware of its burden. This programming
model is preferred for parallelizing computations on a multicore processor where
the static mapping of tasks to threads cannot provide optimal performance.
DTP was made popular by Cilk [10] language, and it is now supported by a
wide variety of frameworks, such as Java fork/join [17], Intel CilkPlus [30], Intel
TBB [27], OpenMP [6], and HClib. Although the APIs to expose the tasks differ
across each implementation, they all internally use a work-stealing [11] runtime
for scheduling the tasks to threads.

We used DTP supported by HClib to implement Amoeba because of its
high performance and easy-to-use APIs. We compared HClib’s performance of
forasync to TBB and OpenMP in Section 4. HClib is a library-based imple-
mentation that uses C++11 lambda functions in its APIs. An async API in
HClib creates a new task S1 that can run in parallel to task S2. A finish is a
generalized join operation, and it ensures that both parallel tasks S1 and S2 has
completed before the execution of statements after the end of the finish scope.
Both async and finish can be arbitrarily nested. forasync is another paral-
lel API supported by HClib that recursively divides a for loop iterations into
two halves that can execute in parallel. Figure 2(a) and Figure 2(b) shows the
pseudocode of two parallel programs using HClib APIs. Underlined code shows
HClib APIs. Figure 2(a) is a parallel recursive merge sort that uses async and
finish APIs. Figure 2(b) shows an implementation of a parallel vector addition
program using the forasync-finish APIs. The forasync API recursively di-
vides a for loop iterations into two halves and launches them in parallel using
async API. The default threshold for the TILE is set to one, but programmers
can adjust it to control task granularity.

Fig. 3. Work-stealing uses a pool of worker threads where each worker maintains a
local set of async tasks in its deque using push/pop operations. Once a worker runs
out of tasks on its deque, it finds a task by stealing from the deque of a random worker

Like Cilk, Intel TBB, and other DTP frameworks, HClib also uses a work-
stealing runtime for dynamic load-balancing (Figure 3). It schedules work ex-
posed by the programmer (async), exploiting idle processors and unburdening
those overloaded. Work-stealing uses a pool of worker threads where each worker
maintains a local set of async tasks in its deque using push/pop operations. A
worker (victim) remains busy as long as it has tasks on its deque. Once a worker
becomes idle, it becomes a thief and continuously searches for a task (async) to
execute by stealing from a random worker (victim). Work-stealing maintains the
locality as steals are generally rare, and push/pop of local tasks are performed
in LIFO order by a victim.

3 Experimental Methodology

Before presenting the motivating analysis for Amoeba, we first describe our
experimental methodology.

Graphs
(Actual Name)

Vertices Degree
Graphs

(Short Name)

Lancichinetti Fortunato
Radicchi (LFR)

54001 4 L1-V54-D4-m0.1

Lancichinetti Fortunato
Radicchi (LFR)

54001 4 L1-V54-D4-m0.6

Lancichinetti Fortunato
Radicchi (LFR)

1801 58 L2-V1-D58-m0.1

Lancichinetti Fortunato
Radicchi (LFR)

1801 58 L2-V1-D58-m0.6

email-enron-large.mtx 33697 5 R-V33-D5

fb-pages-media.edges 27917 7 R-V27-D7

soc-gemsec-HR.edges 54600 9 R-V54-D9

scc infect-dublin.mtx 10973 16 R-V10-D16

bio-HS-CX.edges 4500 24 R-V4-D24

socfb-Mississippi66.mtx 10522 58 R-V10-D58

Table 1. Graphs used in this paper. “R” denotes Real-World graphs and “L” denotes
LFR graphs

3.1 Benchmark graphs and MaxPerm implementations

Our study used six Real-World Graphs (R) [31] and four Lanci-
chinetti–Fortunato–Radicchi (LFR) [16] benchmark-generated graphs (Table 1).
Real-world graphs were chosen based on increasing degree values, while LFR
graphs were selected based on vertices and degrees encompassing our real-world
graphs. Each L1 and L2 has two variants generated by varying the mut parame-
ter (m) as 0.1 and 0.6. Increasing the m increases the ratio of inter-community to
intra-community edges in the network, thereby increasing the difficulty in com-
munity detection. Hence, our four synthetic graphs are named L1-V54-D4-m0.1,
L1-V54-D4-m0.6, L2-V1-D58-m0.1, and L2-V1-D58-m0.6. We will refer to the
state-of-the-art sequential MaxPerm implementation [5] as Default. We have
made changes in Default to implement Amoeba, which can dynamically adapt
the total number of threads. We have also implemented the non-adaptive variant
of Amoeba, which we will refer to as AmoebaStatic. We did not compare the per-
formance of Amoeba with any other community detection algorithms as it would
not be a fair comparison. There are several other algorithms for community de-
tection, but they could have different execution times as they are calculated
using different metrics. This approach is consistent with practices adopted by
other researchers [1, 12, 29, 14, 28, 38].

3.2 Experimental Setup

Our experiments were conducted on a 32-core AMD EPYC 7551 processor with
two hardware contexts per physical core, totalling 64. This processor has a min-
imum frequency of 1.2GHz and a maximum frequency of 2GHz. We maintained
the default system settings with the CPU frequency scaling governor set to
ondemand, allowing it to select CPU frequencies based on the CPU load. The
AMD EPYC 7551 is a NUMA processor with four NUMA domains and 64GB
of RAM. To ensure optimal performance during parallel executions, we utilized
the numactl --interleave command, which binds physical memory pages in
a round-robin across all the NUMA nodes. The Operating System was Ubuntu
20.04.5 LTS, and we compiled our benchmarks using the LLVM compiler ver-
sion 16.0.6 and the -O3 flag. We sourced the HClib implementation from its
official GitHub repository, commit ID ab310a0, and used the oneAPI TBB ver-
sion oneTBB 2021.9.0. Our parallel executions maintained a one-to-one mapping
between application threads and hardware contexts. We utilized the LIKWID
API [37] to measure processor energy consumption and monitored the processor
package energy counter RAPL_PKG_ENERGY:PWR1. It is a socket-wide counter that
measures the energy the entire processor uses (cores, shared caches, memory con-
trollers, and interconnects). We executed each parallel execution of benchmark
graphs eights times and reported the mean execution time.

4 Motivating Analysis

As permanence is a vertex-centric metric, total computation at each vertex in a
graph could differ depending on its total number of neighbours and the neigh-
bouring community. A straightforward parallel implementation (AmoebaStatic)
can thus lead to high energy usage and low performance. We describe it using
a motivational analysis in this section. We begin our discussion by comparing
the accuracy of MaxPerm with the popular modularity maximization. We then
describe the performance and energy usage by using AmoebaStatic.

4.1 Correspondence to Ground-Truth Structure

Benchmark L1-V54-D4-m0.1 L1-V54-D4-m0.6 L2-V1-D58-m0.1 L2-V1-D58-m0.6

Algorithm M P M P M P M P

Accuracy 0.376 0.963 0.57 0.72 0.043 0.647 0.045 0.323

Table 2. Analysis comparing the accuracy of MaxPerm (“P”) with modularity maxi-
mization (“M”). Higher the better. Large “m” implies poor community structure

We analyzed the accuracy of communities obtained through the MaxPerm
(Default) and modularity maximization [2]. Our evaluation was based on four

Graphs
Default

Execution
(Minutes)

Speedup of
AmoebaStatic
over Default

(Higher the better)

Energy Savings in
AmoebaStatic
over Default

(Higher the better)
T=16 T=32 T=64 T=16 T=32 T=64

L1-V54-D4-m0.1 5.9 4.9 5.4 4 67% 61.4% 41.9%

L1-V54-D4-m0.6 11.2 9.9 15.1 13.3 83.2% 85.3% 81.8%

L2-V1-D58-m0.1 6.7 11.8 21.6 26.5 86.3% 89.7% 90.6%

L2-V1-D58-m0.6 2.9 10.6 18.1 22.7 85% 88.2% 89.3%

R-V33-D5 51 7.8 10.6 9.2 79.5% 79.1% 73.7%

R-V27-D7 10.4 9.5 14.1 13 83.1% 84.6% 81.7%

R-V54-D9 15.3 10.1 15.5 14.2 83.8% 85.7% 82.9%

R-V10-D16 2.1 8.5 11.4 10 81% 81.1% 76.5%

R-V4-D24 12.6 12.6 23.3 27.2 87.1% 90.1% 90.8%

R-V10-D58 107.9 12.3 22.9 27.4 86.9% 89.9% 90.9%

Table 3. Analysis comparing the speedup and energy savings in AmoebaStatic relative
to Default at different thread count for different graphs

synthetic graphs (Section 3), and we used Normalized Mutual Information
(NMI) [8] to measure the accuracy of the detected communities against the
ground-truth community structure. The results of this experiment are presented
in Table 2. A lower value of m indicates a stronger community in the network.
We observed that MaxPerm consistently outperformed modularity maximiza-
tion, even when dealing with weaker community structures (higher m values).

4.2 Execution time and Energy Usage

We have modified the Default sequential implementation to use loop-level par-
allelism via the forasync APIs of HClib. In Section 5, we provide a detailed
explanation of these modifications. One of the resulting parallel implementa-
tions, AmoebaStatic, is a straightforward implementation that does not adapt
the thread count. Unlike Amoeba, it requires the user to specify the thread
pool size. We have found that relying on the user-selected thread count may
not always provide optimal performance and energy usage. To demonstrate this,
we executed each graph using AmoebaStatic and varied the thread count while
calculating the speedup and energy relative to the Default sequential implemen-
tation. The results of this experiment are presented in Table 3. For four graphs
(L2-V1-D58-m0.1, L2-V1-D58-m0.6, R-V4-D24, and R-V10-D58), the optimal
thread count was found to be 64 as it provided the best speedup and energy sav-
ings. For another group of graphs (L1-V54-D4-m0.6, R-V27-D7, R-V54-D9, and
R-V10-D16), the optimal thread count was 32. 1 The remaining two graphs (L1-
V54-D4-m0.1 and R-V33-D5) achieved the best speedup when using 32 threads,
but energy savings were maximum when executed with 16 threads. This be-
haviour suggests that the optimal thread count may change during execution for
certain graphs.

These results show that employing more threads than the optimal number can
lead to increased energy usage, while using fewer threads can increase execution
time. Further, to validate our selection of HClib, we conducted a speedup com-
parison of HClib, Intel oneAPI TBB, and OpenMP implementations of Amoe-

baStatic. The geometric mean speedup relative to the Default sequential for
(HClib, TBB, and OpenMP) are (9.5×, 9.1×, 7.7×) using 16 threads, (14.6×,
13.4×, 10.6×) using 32 threads, and (14.5×, 14.5×, 8.6×) using 64 threads. In
Section 6 we have discussed the execution time of the graphs reported in Table 3.

5 Design and Implementation

The previous sections identified the permanence calculation as a highly irregular
computation and highlighted the inefficiency of using a straightforward DTP
approach for permanence maximization. We approach the problem by automat-
ically increasing and decreasing the number of active threads in Amoeba. The
insight is that reverse sorting the vertices based on their total computation would
reduce the number of parallel tasks over time. Hence, Amoeba can leverage this
opportunity to dynamically control the total number of active threads by mon-
itoring the energy wasted by idle threads. Our contribution is designing and
implementing Amoeba, a new community detection algorithm that implements
our above insight. While we used HClib for our implementation, Amoeba can be
effectively utilized with any other DTP framework since we have not modified
the HClib runtime.

5.1 Permanence Maximization using DTP

Algorithm 1 demonstrates how to maximize permanence in Amoeba using DTP.
The changes made to the original sequential MaxPerm implementation are high-
lighted with underlined code. Input to the MaxPerm algorithm is the graph for
which net permanence and community structure need to be calculated. At the
start, each vertex is assigned its seed community and added to an array (Line 2).
The iterative implementation of permanence maximization calculates new per-
manence for each vertex until the difference in net permanence between two
consecutive iterations is less than a specified threshold (Line 4, set to 2%). This
iterative algorithm works, as mentioned below.

5.2 Reverse sorting the vertices

The vertex array created at Line 2 is reverse sorted by Amoeba at Line 7. This
sorting is based on the total computation at each vertex, which is determined
by the product of the number of neighbours (Neighbours(v)) and neighbouring
communities (NeighbouringCommunity(v)) for each vertex. During the first it-
eration of the while loop, the primary community structure is calculated, and
sorting is avoided at Line 6. If K is 100%, it indicates that thread adaption will
not occur (Section 5.4). The while loop iterations continue refining the com-
munities generated from previous iterations. Reverse sorting produces an array
where the total computation at each vertex decreases while iterating the vertex
array from start to end (Line 9). Amoeba leverages this property to dynamically
control the total active threads and improve overall energy utilization (Line 11).

Algorithm 1 Permanence maximization algorithm in Amoeba

1: procedure MaxPerm(G(V,E)) ▷ Input is Graph G(V vertices, E edges)
2: Add each vertex v from G in an array V and assign them unique communities
3: PermOld ← −1;PermNew ← 0;PrimaryComm ← true
4: while (PermOld − PermNew) > THRESHOLD do
5: PermOld ← PermNew;PermNew ← 0;
6: if not PrimaryCommAnd(K < 100) then ▷ K from Equation 2
7: Sort(V, TotalComputation(v)) ▷ Reverse sort vertices by computations
8: end if
9: for v ∈ V do
10: if (!PrimaryComm)And(K < 100)And(v%V Count == 0) then
11: AdaptAmoebaThreads()
12: end if
13: vPermCurrComm ← Permanence(v)
14: if vPermCurrComm == 1 then ▷ MaxPermanence attained by v is 1
15: PermNew += 1
16: continue
17: end if
18: vPermCurrNeigh ← 0
19: parallel for u ∈ {Neighbors(v)} do ▷ Parallel for using finish &

forasync
20: vPermCurrNeigh += Permanence(u)
21: end parallel for
22: parallel for C ∈ NeighbouringCommunity(v) do ▷ Parallel for using

finish & forasync
23: Move v to New Community C
24: vPermNewComm ← Permanence(v)
25: vPermNewNeigh ← 0
26: parallel for u ∈ {Neighbors(v)} do ▷ Parallel for using finish &

forasync
27: vPermNewNeigh += Permanence(u)
28: end parallel for
29: if (vPermCurrComm < vPermNewComm) And (vPermCurrNeigh < vPermNewNeigh)

then
30: vPermCurrComm ← vPermNewComm

31: else
32: Replace v to its original community
33: end if
34: end parallel for
35: PermNew += vPermCurrComm

36: end for
37: AwakeAmoebaThreads()
38: PrimaryComm ← false
39: end while
40: return PermNew/size(V) ▷ Detected community structure & NetPermanence

41: end procedure

Thread adaption is triggered at fixed intervals (Line 10) to regulate the adapta-
tion frequency (explained in Section 5.4).

1

5.3 Permanence of individual vertices

It is important to note that as a vertex’s permanence increases, it indicates a
rise in the number of internal connections and/or a decline in the number of
external connections to its neighbouring communities. The primary objective of
the MaxPerm algorithm is to attain high permanence values for each vertex.
The Algorithm 1 achieves this by following a five-step process for every vertex
in G, utilizing a for loop at Line 9. Step− 1 calculates the vertex’s permanence
(Line 13), and if it has already reached maximum permanence, further processing
stops (Line 16). If not, Step−2 calculates the neighbour’s permanence (Line 20),
and Step− 3 moves the vertex to each neighbouring community, calculating its
new permanence (Lines 23–24). As the movement affects the neighbours of the
vertex, Step−4 calculates the new permanence of the neighbours (Lines 26–27).
Finally, Step− 5 (Lines 29–32) assesses whether the vertex should move to the
new community or stay in its original community. The vertex moves to the new
community if there is an improvement in its permanence and its neighbour’s
permanence (Line 29). All four steps, except Step-1, have been modified to in-
troduce parallelism. The for loops inside Steps 2-4 have been parallelized using
finish-forasync APIs, and thread-local variables have been used to avoid the
use of locking APIs (not shown in Algorithm 1 for simplicity). Step-5 is sequen-
tial and is the same as in Default, highlighted as modified due to support for
thread-local variables. After executing these five steps for each vertex, Amoeba
resets the number of active threads to the maximum at Line 37 before initiating
a new while loop iteration.

5.4 Dynamically adjusting thread count

1
The degree of a vertex determines its total number of neighbours, which

means that parallelism will increase with an increase in both degrees and the
total number of vertices. As a result, a fixed frequency of invoking the thread
adaptation routine cannot be used for all input graphs. The total number of
active threads should be adapted less frequently for graphs with high paral-
lelism and more frequently for those with lower parallelism. Additionally, the
frequency of thread adaptation should depend on the total number of physical
cores (NCores), occurring more frequently for high NCoresand less frequently for
low NCores. To implement this, we use specific criteria to invoke thread adapta-
tion after every VCountincrease in total vertices processed (Line 10). For a given
graph with an average degree ofD and total vertices of V , launched on a machine
with NCoresnumber of physical cores, VCountis calculated as K%× V , where K
is as mentioned below:

Algorithm 2 Code for dynamically changing the total number of active workers
in Amoeba
1: procedure AdaptAmoebaThreads
2: static ActionLast ← DECREMENT
3: static WorkersActive ← 2×NCores

4: WorkersToChange ← 2
5: if (called for first time) Or (energy reduced since last call) then
6: if ActionLast == DECREMENT then
7: sleep(WorkersToChange)
8: else
9: awake(WorkersToChange)
10: end if
11: else
12: if ActionLast == DECREMENT then
13: awake(WorkersToChange)
14: ActionLast ← INCREMENT
15: else
16: sleep(WorkersToChange)
17: ActionLast ← DECREMENT
18: end if
19: end if
20: if ActionLast == DECREMENT then
21: WorkersActive −= WorkersToChange

22: else
23: WorkersActive += WorkersToChange

24: end if
25: end procedure

K = min(max(0.25,
D1+Q

NCores
), 100), where Q =

D

NCores
(2)

The value of K is determined by a range with a lower limit of 0.25% and an
upper limit that is dependent on both the degree and NCores, as demonstrated
in Equation 2. An additional exponential weight, Q, is assigned to the degree to
calculate the upper limit of K, as shown in the same equation. The Q value is
adjusted dynamically to ensure fewer calls for thread adaptation are made when
NCoresis already low. For high NCores, the Q value is smaller, while for low NCores,
it is larger. K’s value increases exponentially when parallelism is estimated to be
high in relation to the total physical core count, resulting in occasional thread
adaptation. When parallelism is low, K is assigned a smaller value, resulting in
frequent thread adaptation in Amoeba. When K is calculated as 100%, thread
adaptation is unnecessary in Amoeba as the parallelism is estimated to be sig-
nificantly higher. All the graphs used in this paper are shown in Table 4, along
with their corresponding K values.

The routine AdaptAmoebaThreads (Line 11) shown in Algorithm 2 controls
the number of active threads. Amoeba sets the thread pool size in HClib to
match the total hardware contexts (64 in our case) at the start of any graph
execution (Line 3). As explained in Section 5.1, the vertex array is reverse sorted
by Amoeba to reduce the parallelism at each vertex with the increasing iterations
of the for-loop (Line 9 in Algorithm 1). This approach aims to minimize the
number of active threads as the loop progresses and limit the number of idle
threads that would constantly query the underlying thread pool for tasks. To
achieve this, AdaptAmoebaThreads puts two active threads to sleep (Line 4)
and calculates the difference in processor package energy consumption during the
next invocation of this routine. If there is an increase in energy consumption, the
previous decision is invalidated, and two idle threads are awakened (Line 23).
However, if there is a decrease in energy consumption, the earlier decision is
validated, and the active thread count is further reduced by two (Line 21). This
cycle continues until the number of active threads is reset to match the total
number of hardware contexts before starting the next iteration of the while loop
(Line 37 in Algorithm 1).

6 Experimental Evaluation

We now discuss the experimental evaluation of Amoeba. It frees the user from
the task of determining the ideal thread count, which may differ from one graph
to another (as detailed in Section 4). Instead, it sets the thread count to the
maximum number of hardware contexts available (in our case, 64) and proceeds
to dynamically evaluate the optimal thread count that delivers optimal perfor-
mance and energy efficiency.

Graphs L1-V54-D4-m0.1 L1-V54-D4-m0.6 L2-V1-D58-m0.1 L2-V1-D58-m0.6 R-V33-D5 R-V27-D7 R-V54-D9 R-V10-D16 R-V4-D24 R-V10-D58

Net Permanence
(NP) in Default

0.596 -0.520 0.108 -0.143 0.134 0.016 -0.181 0.437 -0.098 -0.052

NP in Amoeba
over Default

Same 2% lesser Same Same Same 3% more Same Same 3.3% more Same

Total Parallelism
in AmoebaStatic

4.9× 107 12.1× 107 5.8× 107 7.7× 107 23.8× 107 12.9× 107 16× 107 2.5× 107 6.3× 107 108× 107

K in Amoeba
(Equation 1)

0.25% 0.25% 100% 100% 0.25% 0.33% 0.52% 2% 8.13% 100%

Table 4. Net permanence, total parallelism and value of K in Amoeba

6.1 Net Permanence

The NP calculated by Default and AmoebaStatic is identical for any given graph,
ranging between −1 to +1, with a higher value indicating stronger community
structure. Amoeba’s reverse sorting of the vertex array may cause slight changes
in the NP (as described in 1. However, the difference in NP is minimal and falls
within the −2% to +3.3% range.

6.2 Execution time

Table 3 demonstrates that the calculation of permanence is compute-intensive,
with the sequential execution times ranging from 2 minutes to 1.8 hours. The
execution time is influenced by the graph’s degree, the number of vertices, and
the NP value. It is possible to process a graph with a higher degree faster than one
with a lower degree, as seen in the examples of R-V4-D24 and R-V33-D5. Higher
NP values result in better community structure but also increase execution time,
as the while loop in Algorithm 1 takes more iterations to refine the communities.
Therefore, graphs with high NP values and many vertices, such as R-V33-D5 and
R-V27-D7, have longer execution times. However, due to the difference in vertex
count, R-V10-D16 executes faster than R-V54-D9, even though the former has
a higher NP value. R-V10-D58 has a high execution time (1.8 hours) because of
its high degree. Increasing m in LFR graphs increases the ratio of inter to intra
community edges, thereby resulting in poor community structure. It reduces
execution time as the while loop in Algorithm 1 would converge sooner. However,
L1-V54-D4-m0.1 is an exception with a small degree and m value, leading to
community assignment within a few iterations.

6.3 Speedup and Energy Savings in Amoeba

Figure 4 reports the experimental evaluation of Amoeba compared to Amoe-
baStatic for all the graphs used in this paper (total threads set to 64), except
for the three graphs where K = 100%. In such cases, there is no difference in the
execution of Amoeba and AmoebaStatic, as the parallelism is estimated to be at
its maximum (as stated in Section 5.4). Figure 4(a) shows the speedup achieved
by Amoeba, factoring in contributions from reverse sorting (Section 5.1) and
thread adaptation (Section 5.4) into the net speedup. The total parallelism in
Amoeba and AmoebaStatic may differ due to reverse sorting 1. Table 4 shows

(a) Speedup obtained by Amoeba (b) Relative parallelism. Lower value im-
plies reduction in parallelism in Amoeba

(c) Energy savings in Amoeba (d) Active thread count during execution

Fig. 4. Experimental evaluation of Amoeba over AmoebaStatic. Results not reported
for graphs having K = 100% (L2-V1-D58-m0.1, L2-V1-D58-m0.6, and R-V10-D58)

the total parallelism in AmoebaStatic, and Figure 4(b) displays the relative par-
allelism in Amoeba. The speedup in Amoeba due to reverse sorting alone is 1
proportional to the change in parallelism.

The thread adaptation has the maximum speedup for L1-V54-D4-m0.1 and
R-V33-D5 in Figure 4(a). As explained in Section 4.2, these graphs are where
AmoebaStatic achieved maximum energy savings using 16 threads. Figure 4(d)
confirms this observation, as Amoeba reduced the active thread count in these
two graphs right after the execution started. Thread reduction helps to minimize
the NUMA effect on our machine, which in turn improves parallel performance.
Among all the graphs, Amoeba has the shortest execution time of 13.3 seconds for
R-V10-D16, while the others range between 23.6 seconds (R-V4-D24) and 328.5
seconds (R-V33-D5). However, the while loop iterations inside 1 are extremely
short (Line 4 in Algorithm 1, ≈ 1.4 seconds), making it difficult for Amoeba to
effectively measure the impact of thread adaptations, resulting in a slowdown
of 4%. R-V4-D24 also has a relatively short execution time, but it can achieve
speedup due to the reduction in parallelism from reverse sorting of vertices.
Figure 4(c) illustrates the energy savings in Amoeba over AmoebaStatic, which
is directly proportional to the speedup obtained by Amoeba over AmoebaStatic.
Overall, across all ten graphs, Amoeba achieved a geomean speedup and energy
savings of 6% and 12.4%, respectively. Amoeba obtained a geomean speedup
and energy savings of 15.3% and 85.4% over Default, respectively.

6.4 Effect of Controlling Task Granularity

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

L1-V54-D4-m0.1

L1-V54-D4-m0.6

L2-V1-D58-m0.1

L2-V1-D58-m0.6

R-V33-D5

R-V27-D7

R-V54-D9

R-V10-D16

R-V4-D24

R-V10-D58

min
max

mean
geomeanS

p
e

e
d

u
p

 o
v
e

r
A

m
o

e
b

a
 (

T
ile

 S
iz

e
=

1
)

 [
H

ig
h

e
r

th
e

 B
e

tt
e

r]

Amoeba (TSIZE=2) Amoeba (TSIZE=4)

Fig. 5. Amoeba does not benefit from large TILE SIZE in forasync, as reverse sorting
of vertices results in lesser computation with increasing iterations in forasync

As mentioned in Section 5.1, Amoeba would not benefit by controlling task
granularity in forasync APIs due to highly irregular parallelism at each vertex.
To confirm this, we executed Amoeba using two different TILE_SIZE (2 and 4)
and compared the respective execution time with the default setting that uses
TILE_SIZE=1. This experiment is shown in Figure 5, indicating that increasing
the task granularity leads to an increase in execution time.

7 Related Work

7.1 Techniques for community detection

There are several other methods to detect communities other than Permanence,
such as spectral graph partitioning [22], random walk [25], and consensus clus-
tering [15]. Modularity [21] is one of the most widely used metrics. It measures a
graph’s structure, measuring the density of edges within a group or community.
However, it suffers from the resolution limit problem where it tends to form
large communities by merging smaller than a certain threshold [9]. SPart is a
vertex-based metric that considers each vertex’s contribution and its neighbour
in the community formation [7]. Community score tries to detect communities
on the principle that the density of internal edges in a community is higher than
that of external edges [23]. We refer readers to [4] for an in-depth analysis of
different community detection metrics.

7.2 Multicore parallelism in community detection

Several prior works exist for multicore parallelism in community detection al-
gorithms. Staudt et al., [35] proposed OpenMP [6] based parallel implemen-
tation for modularity maximization by using the Louvain method [2]. Lu et
al., [19] implemented a parallel Louvain algorithm and proposed heuristics to
overcome the original algorithm’s inherent sequential barrier. Scalable Commu-
nity detection (SCD) uses OpenMP to parallelize Weighted Community Clus-
tering (WCC) on multicore processors for overlapping community detection [26].
Riedy et al., presented a highly parallel agglomerative implementation for the
Clauset–Newman–Moore algorithm [28]. Kuzmin et al., [14] proposed a Speaker
Listener Label Propagation (SLLP) algorithm for overlapping community de-
tection that uses OpenMP and TBB for parallelization. GLEAM is another
OpenMP based community detection framework [3]. Hydetect is a recent hybrid
CPU-GPU implementation of parallel community detection using Louvain’s al-
gorithm [1].

FDT [36] and Varuna [34] are popular frameworks that also use online tech-
niques to adapt the number of threads in a parallel program. FDT is suitable
for data-parallel OpenMP work-sharing loops, whereas Varuna is programming
model-independent and can work even with DTP applications. Like Amoeba,
Varuna uses an exploration-based analytic model to determine the optimal num-
ber of threads for a given parallel program. However, unlike Varuna, as Amoeba
is integrated inside the MaxPerm algorithm, Amoeba tweaks the iterative Max-
Perm such that the vertices with higher parallelism are processed earlier in an
iteration than those with lesser parallelism. Hence, Amoeba begins the iteration
with maximum threads and then aims to decrease the thread count until that
iteration finishes. Amoeba also avoids the exploration overheads by adapting the
exploration frequency based on the network graph’s degree and vertex count.

8 Conclusion

There are several metrics for evaluating the quality of a community structure,
among which permanence stands out as superior to other popular community
detection metrics. However, the computation of permanence is expensive and can
lead to an irregular workload. This paper presented a solution by implementing
dynamic task parallelism to parallelize the permanence calculation. However,
as this approach is prone to worker starvation and improper energy utilization,
we proposed Amoeba, which tweaks the permanence calculation algorithm and
dynamically adapts the active thread count based on available parallelism. Our
empirical results show that Amoeba improves energy efficiency and overall per-
formance. We plan to extend Amoeba’s support for hybrid CPU-GPU computing
in future work.

References

1. Bhowmik, A., Vadhiyar, S.: Hydetect: A hybrid cpu-gpu algorithm for community
detection. In: HiPC ’19. pp. 2–11. IEEE (2019)

2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. JSTAT (2008)

3. Bu, Z., Cao, J., Li, H.J., Gao, G., Tao, H.: Gleam: a graph clustering framework
based on potential game optimization for large-scale social networks. Knowledge
and Information Systems (2018). https://doi.org/10.1007/s10115-017-1105-6

4. Chakraborty, T., Dalmia, A., Mukherjee, A., Ganguly, N.: Metrics for community
analysis: A survey. ACM CSUR 50(4), 1–37 (2017)

5. Chakraborty, T., Srinivasan, S., Ganguly, N., Mukherjee, A., Bhowmick, S.: On
the permanence of vertices in network communities. In: KDD ’14 (2014)

6. Chandra, R.: Parallel programming in OpenMP. Morgan kaufmann (2001)

7. Chira, C., Gog, A., Iclănzan, D.: Evolutionary detection of community structures
in complex networks: A new fitness function. In: IEEE CEC (2012)

8. Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure
identification. JSTAT (2005)

9. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proceed-
ings of the national academy of sciences 104(1), 36–41 (2007)

10. Frigo, M.: Multithreaded programming in Cilk. In: PASCO ’07. pp. 13–14. ACM
(2007). https://doi.org/10.1145/1278177.1278181

11. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the
Cilk-5 multithreaded language. In: PLDI. pp. 212–223. ACM (1998).
https://doi.org/10.1145/277650.277725

12. Ghosh, S., Halappanavar, M., Tumeo, A., Kalyanaraman, A., Lu, H., Chavarria-
Miranda, D., Khan, A., Gebremedhin, A.: Distributed louvain algorithm for graph
community detection. In: IPDPS ’18. pp. 885–895. IEEE (2018)

13. Kumar, V., Zheng, Y., Cavé, V., Budimlić, Z., Sarkar, V.: Habaner-
oUPC++: A compiler-free PGAS library. In: PGAS. pp. 5:1–5:10. ACM (2014).
https://doi.org/10.1145/2676870.2676879

14. Kuzmin, K., Shah, S.Y., Szymanski, B.K.: Parallel overlapping community detec-
tion with slpa. In: SCSM (2013)

15. Lancichinetti, A., Fortunato, S.: Consensus clustering in complex networks. Scien-
tific reports (2012)

16. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Phys. Rev. E (2008)

17. Lea, D.: A java fork/join framework. In: JAVA (2000)
18. Leskovec, J., Lang, K.J., Mahoney, M.: Empirical comparison of algorithms for

network community detection. In: WWW ’10. pp. 631–640. ACM (2010)
19. Lu, H., Halappanavar, M., Kalyanaraman, A.: Parallel heuristics for scalable com-

munity detection. Parallel Computing (2015)
20. Lu, Z., Wahlström, J., Nehorai, A.: Community detection in complex networks via

clique conductance. Scientific reports 8(1), 1–16 (2018)
21. Newman, M.E.: Modularity and community structure in networks. Proceedings of

the national academy of sciences 103(23), 8577–8582 (2006)
22. Newman, M.E.: Spectral methods for community detection and graph partitioning.

Physical Review E 88(4), 042822 (2013)
23. Pizzuti, C.: A multiobjective genetic algorithm to find communities in complex

networks. IEEE Transactions on Evolutionary Computation 16(3), 418–430 (2011)
24. Pons, P., Latapy, M.: Computing communities in large networks using random

walks. In: ISCIS ’05 (2005)
25. Pons, P., Latapy, M.: Computing communities in large networks using random

walks. In: International symposium on computer and information sciences. pp.
284–293. Springer (2005)

26. Prat-Pérez, A., Dominguez-Sal, D., Larriba-Pey, J.L.: High quality, scalable and
parallel community detection for large real graphs. In: WWW ’14 (2014)

27. Reinders, J.: Intel Threading Building Blocks. O’Reilly & Associates, Inc., first
edn. (2007)

28. Riedy, E.J., Meyerhenke, H., Ediger, D., Bader, D.A.: Parallel community detection
for massive graphs. In: PPAM ’11. pp. 286–296. Springer (2011)

29. Riedy, J., Bader, D.A., Meyerhenke, H.: Scalable multi-threaded community de-
tection in social networks. In: IPDPSW ’12. pp. 1619–1628. IEEE (2012)

30. Robison, A.D.: Composable parallel patterns with intel cilk plus. Computing in
Science and Engg. 15(2), 66–71 (2013). https://doi.org/10.1109/MCSE.2013.21

31. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization. In: AAAI (2015)

32. Rosvall, M., Bergstrom, C.T.: An information-theoretic framework for resolving
community structure in complex networks. National Academy of Sciences (2007)

33. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal
community structure. National Academy of Sciences (2008)

34. Sridharan, S., Gupta, G., Sohi, G.S.: Adaptive, efficient, parallel execution of par-
allel programs. In: PLDI (2014)

35. Staudt, C.L., Meyerhenke, H.: Engineering parallel algorithms for community de-
tection in massive networks. IEEE TPDS (2016)

36. Suleman, M.A., Qureshi, M.K., Patt, Y.N.: Feedback-driven threading: Power-
efficient and high-performance execution of multi-threaded workloads on CMPs.
In: ASPLOS (2008)

37. Treibig, J., Hager, G., Wellein, G.: Likwid: A lightweight performance-oriented tool
suite for x86 multicore environments. In: ICPPW (2010)

38. Zhang, Y., Wang, J., Wang, Y., Zhou, L.: Parallel community detection on large
networks with propinquity dynamics. In: SIGKDD ’09. pp. 997–1006. ACM (2009)

