
KarmaPM: Reward-Driven Power Manager

Sunil Kumar[0000−0002−0891−7847] and Vivek Kumar�[0000−0003−3042−4202]

IIIT-Delhi, India
{sunilk,vivekk}@iiitd.ac.in

Abstract. Hardware overprovisioning is a widely used technique to im-
prove the average power utilization of computing systems by capping
the processor’s power consumption. However, applying a uniform power
cap across multiprocessor system sockets can significantly impact co-
running applications due to workload variations. This paper introduces
KarmaPM, a novel power management library for co-running applica-
tions on multiprocessor systems, independent of the parallel program-
ming model, based on application power donation phases. KarmaPM
dynamically redistributes power bidirectionally across the sockets to im-
prove overall system throughput for co-running applications while main-
taining fairness between them. KarmaPM periodically profiles the CPU
utilization of each application. When it detects an application underuti-
lizing its CPU resources, it donates the surplus power from this donor
application’s sockets to the other sockets (receivers), exhibiting high
CPU utilization. When the donor application enters a high CPU uti-
lization phase, KarmaPM employs a reward power scheme that rewards
the donor application by returning a portion of the power transferred
to the receiver sockets. We evaluated KarmaPM across various exascale
proxy application mixes and power caps on a four-socket, 72-core Intel
Cooper Lake processor. Our results show that KarmaPM improved the
system throughput (geometric mean) by 13.2% at a lower power cap and
6.6% at a higher power cap. Additionally, KarmaPM delivered improve-
ments of 12.5% and 4.4% in system throughput (geomean) compared to
an existing power manager at these respective power caps.

Keywords: Hardware overprovisioning · mulitprocessor · system
throughput · co-running applications

1 Introduction

The number of compute elements, including cores and sockets, is increasing
rapidly in modern multiprocessor systems used in cloud infrastructures, data
centres, and supercomputers [1]. This advancement enables concurrent execu-
tion of multiple applications on multiprocessor systems. However, varying power
requirements among co-running applications necessitate limiting processor con-
sumption to reduce the carbon footprint. To manage rising power demands,
data centres and supercomputers commonly employ hardware overprovisioning
for capping power usage at some processors below their Thermal Design Power



(TDP) limit [11] while reallocating unused power to support additional com-
puting systems (e.g., GPUs, and nodes in the HPC cluster). Modern processors
support hardware overprovisioning through power capping (PCAP), which en-
forces user-defined limits by throttling frequency at the hardware level. However,
operating a processor under a PCAP can significantly degrade the application’s
performance [15]. Parallel applications often exhibit intermittent phases of low
CPU utilization during execution, referred to as slacks. These phases occur when
only a subset of the allocated cores actively execute application threads while the
remaining cores remain idle. Slacks typically arise during sequential execution,
I/O operations, or synchronization barriers, in contrast to parallel regions where
CPU resources are fully utilized. A well-studied approach to improving the per-
formance of such applications running under PCAP in an HPC cluster is to use
power managers (PMs) that redistribute surplus power from slack-experiencing
nodes to busy nodes [9, 5, 10, 4]. However, a common limitation of these solutions
is that they do not focus on inter-socket power scheduling within a multipro-
cessor system. Additionally, they fail to account for fairness in the system by
not rewarding the power donor, as power is transferred unidirectionally from
processors running under slack to those executing parallel regions.

This paper proposes KarmaPM, a novel reward-based power manager de-
signed to enhance the fairness and throughput of co-running applications in a
multi-socket system under a PCAP based on the application’s power donation
karmas1. KarmaPM operates independently as a lightweight daemon process
alongside the co-running applications and requires no prior knowledge of appli-
cation characteristics. KarmaPM periodically monitors the CPU utilization of
applications at each socket. When it identifies an application underutilizing its
CPU resources, it reallocates surplus power from this donor application’s sockets
to other receiver sockets that fully utilize its CPU resources. KarmaPM records
the duration the donor application has provided power to the receiver sockets.
When the donor application resumes fully utilizing its CPU resources, KarmaPM
rewards that application by returning a fraction of the total power previously
donated to the receiver sockets. The power transfer between sockets is achieved
by reducing the PCAP at the donor socket while increasing the PCAP at the re-
ceiver socket by the same amount, ensuring that the overall power consumption
remains within the user-set PCAP limits.

In summary, this paper makes the following contributions:

– KarmaPM, a library-based power management solution for multiprocessor
systems that enhances fairness and throughput for co-running parallel ap-
plications on a power-capped multiprocessor server while adhering to the
system power budget.

– A lightweight profiler that monitors CPU utilization across each socket, fa-
cilitating the transfer of excess power from underutilized sockets to those
fully utilizing their CPU resources.

1 Sanskrit word referring to the sum of somebody’s good and bad actions in one of
their lives. KarmaPM only pays attention to good karmas.



– A novel power reward mechanism designed to promote fairness and through-
put by compensating power-donating sockets with a portion of the donated
power as they transition from low to high CPU utilization phases.

– An evaluation of KarmaPM on a quad-socket 72-core Intel Xeon pro-
cessor using diverse mixes of exascale proxy applications [2] and various
PCAPs, demonstrating that KarmaPM can substantially improve the sys-
tem throughput and application fairness.

2 Related Work

Hardware overprovisioning [11] is widely used to reduce the increasing power
consumption cost and carbon footprint of data centres and supercomputers. It
has been used extensively both at the cluster and single server levels. Broadly,
these solutions can be divided into two categories: one that aims to improve
the performance of applications running at cluster level using inter-node power
scheduling, and the other that seeks to improve the performance of applications
running at server level. Patki et al. [11] proposed an approach for cluster-level
power budgeting by configuring a fixed power budget at each node. However,
applying uniform power allocation at each node impacts the application’s per-
formance when its power demand increases at some nodes. Such issues are com-
mon in MPI applications where some ranks could experience slack while others
are busy (e.g., due to barrier synchronization [5] or manufacturing variability in
processors [7]). Several approaches exist for power scheduling across nodes run-
ning different MPI applications for improving system throughput [16, 9, 4] and
application level fairness [10]. Improving the system throughput at a multipro-
cessor server has been explored by configuring processor frequency for a single
running application [14, 6] or combining it along with tuning the thread count
for co-running applications [15].

Cluster-based power managers transfer power unidirectionally, redistribut-
ing it from donor to receiver nodes without ensuring fairness through rewarding
donors. Existing server-level solutions optimize processor resources to minimize
performance loss. However, none of the approaches transparently enhances sys-
tem throughput and fairness for co-running applications on a multiprocessor
system using power scheduling. Recently, Costero et al. [3] proposed a dynamic
power distribution solution for such systems, but it requires modifications to the
OpenMP runtime and is limited to co-running applications using OpenMP task-
ing pragma. KarmaPM bridges this gap with a programming model-oblivious,
reward-based inter-socket power scheduling approach that dynamically adjusts
power allocation based on an application’s instantaneous usage, requiring no
prior knowledge of input applications. A power rewarding scheme was recently
explored for the Fugaku supercomputer, where applications with low power us-
age earn tokens to reduce their wait time in the job queue during relaunch [13].



3 Experimental Methodology

We first describe our experimental methodology, followed by a motivating anal-
ysis for KarmaPM. We used eight exascale proxy applications for our ex-
perimental evaluations [2]. These applications and input parameters are: (1)
SimpleMOC (n_azimuthal=64, cai=3, fai=3, decomp_assemblies_ax=5), (2)
PathFinder (input_file=10kx750.adj_list), (3) CG (class=C), (4) MiniFE
(nx=256, ny=300, nz=512, iterations=60), (5) RSBench (p=1000000),
(6) Quicksilver (input_file=Coral2_P1.inp, n=200000), (7) Pennant (in-
put_file=leblancbig.pnt, meshparams=120x1080, tstop=10.0), (8) CoMD
(n=40x40x40, nSteps=800). We choose different parallel programming models in
these applications as discussed in Section 6 to demonstrate the parallel runtime
obliviousness in KarmaPM. We did not modify the applications otherwise, but
we changed the default parameters to control the execution time on our ma-
chine. We used GNU compiler version 10.3 with the -O3 optimization to compile
the applications. We performed all experimental evaluations on a quad-socket
Intel(R) Xeon(R) Gold Cooperlake 5318H processor, which has 18 cores per
socket (totalling 72 cores). Hyperthreading was disabled, and turbo boost was
enabled. Our machine had 512GB of RAM and Ubuntu 20.04.5 LTS operating
system (OS) with Linux Kernel 5.4. To set the socket-level power cap (PCAP),
we used the Intel RAPL (Running Average Power Limit) interface by writing
to the MSR_PKG_POWER_LIMIT register for each socket. Our experimental evalu-
ations used three different PCAPs: 83 Watts (55% of TDP), 98 Watts (65% of
TDP), and 112 Watts (75% of TDP). A PCAP setting of 150 Watts (the TDP
for each socket) indicates that each socket’s PCAP is individually set to 150
Watts, resulting in a total system-level PCAP of 600 Watts. We preserved the
same system and application settings across all PCAPs.

4 Motivating Analysis

(a) Periods of slack resulting from
sequential phases

(b) Power usage correlates with
the presence of slack

Fig. 1. Execution timeline of applications at TDP

This section explains the rationale behind KarmaPM’s design by analyzing
our selected application’s CPU utilization and power consumption patterns dur-
ing execution. We conducted these experiments by running each application on



a single socket of our quad-socket machine. Figure 1(a) presents CPU utilization
trends for SimpleMoC, Pathfinder, MiniFE, and CG, demonstrating periods of
slack due to sequential execution phases. For CG, slack occurs twice, totalling
approximately 25% of the total execution time. The other three applications ini-
tially exhibit slack, ranging from 23% to 49% of execution. The remaining four
applications, RSBench, Quicksilver, Pennant, and CoMD, do not experience any
slack during their execution timeline. Slack also impacts power consumption, as
shown in Figure 1(b), where reductions align with the slacks in Figure 1(a)

5 Design and Implementation

The previous section highlighted that a parallel application’s power consump-
tion is influenced by its instantaneous CPU utilization. These two metrics can
be measured dynamically using a lightweight online daemon profiler, eliminat-
ing the need for prior application execution data. This daemon facilitates inter-
application power scheduling based on the CPU utilization of individual applica-
tions within a multiprocessor server. Our approach employs a lightweight daemon
process called KarmaPM, which is launched alongside parallel applications and
periodically monitors the active core count and power usage of each co-running
application. Applications are launched on the server ensuring that sockets are
not shared between applications, although a single application may use multiple
sockets. Each application exclusively uses local socket resources such as CPU
and memory. KarmaPM activates at regular intervals to minimize interference
with the application’s execution. No changes to applications are needed to use
KarmaPM. Our insight is to initially redirect surplus power from an underuti-
lized sockets of one application to the busier sockets of other applications to
enhance overall system performance. Subsequently, when the donor application
transitions to a busy state, it is rewarded with a portion of the transferred power
to maintain fairness in the system.

PDonated(X,Y ) =

(
k∑

i=1

PDonated,i · ni

)/( k∑
i=1

ni

)

– PDonated(X,Y): Average power donated from App X to App Y over
∑k

i=1 ni epochs.
– PDonated,i: Power donated from x to y in the i-th epoch group (continuous phase of execution).
– ni: Number of epochs in the i-th epoch group.
– k: Total number of epoch groups.

Fig. 2. Formula to calculate net average power donated from application X to Y

5.1 KarmaPM Daemon Loop

Algorithm 2 presents the pseudocode implementation of the KarmaPM daemon
process designed for a multicore server with multiple sockets. Initially, it sets
the default PCAP for each socket as specified by the user (Line 3). The daemon
operates in a loop as long as at least two applications remain active (Line 5).



Algorithm 2: KarmaPM daemon process loop
1 Initialization:
2 State[NApplication], PUsage[NApplication];
3 Set PCAPDefault on each socket;
4 sleep(warmup duration);
5 while atleast two applications are running do
6 for application = 1 to NApplication do
7 if application is running then
8 Store application’s socket power into PUsage[application];
9 if all cores are busy then

10 State[application] ← CPU_Busy;
11 else
12 State[application] ← CPU_Slack;
13 end
14 else
15 State[application] ← INACTIVE;
16 Set PCAPDefault on application’s socket;
17 end
18 end
19 KarmaPM _Policy(PUsage, State);
20 sleep ( Tepoch);
21 end
22 Set PCAPDefault on each socket;

Within each iteration, it iterates over all running applications (Line 6) to mea-
sure their power consumption (Line 8) and CPU utilization (Lines 9–13) on
the sockets where they are executing. If an application terminates on a socket,
the daemon marks that application’s state as inactive (Line 15) and resets the
PCAP to the default value set by the user (Line 16). An alternative design choice
would be distributing the surplus power available at an inactive socket due to
its application termination among the busy applications. We did not follow it
in KarmaPM implementation to ensure a fair evaluation. Subsequently, the dae-
mon applies the application-level KarmaPM power scheduling policy (Line 19).
Finally, it returns to sleep for a fixed epoch of 100ms (Line 20). Due to cold
caches at the start of the execution, the KarmaPM daemon loop activates only
after a warmup duration of two seconds (Line 4) to allow the system to stabi-
lize. Before concluding its operation, the KarmaPM daemon resets the PCAP
on each socket to the user-defined default value (Line 22).

5.2 KarmaPM Power Scheduling Policy

Figure 3 demonstrates the working of KarmaPM power scheduling policy, il-
lustrated through a running example of a multiprocessor server with four sock-
ets labelled SocketA, SocketB, SocketC, and SocketD. A single instance of the
KarmaPM daemon process is launched on this server alongside applications
BenchA, BenchB, BenchC, and BenchD, which are assigned to sockets SocketA,
SocketB, SocketC, and SocketD, respectively. The KarmaPM process is pinned
to the last core in SocketA, and the affinity of an application’s threads is set to
its respective sockets using the taskset command (the daemon process shares a
core with the last thread of BenchA). To ensure socket-local memory allocation,
the numactl command line tool is utilized, allowing the memory pages of each
application to be allocated in their respective socket-local DRAM.
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(f) At Epoch 65, socket B returns
to high CPU utilization. Hence, B
has no more surplus power.

(e) Socket A is rewarded 5W from each C
and D from Epoch 45 to 64 after
transitioning into high CPU utilization.
Hence, the PCAP of sockets A, C and D are
set to 118W, 103W and 103W, respectively.

(d) Total surplus power is now 30W
as only socket B has slack. Hence, it
is distributed over sockets A, C and
D and set their PCAP to 108W.

(a) Power usage at sockets A and B
are 78W and 68W, respectively,
due to slack, shown in green, while
others in red use full power 98W.

(b) PCAP of sockets A and B are
decreased by 20W and 30W respectively
as they donated their surplus power to
other sockets equally. Hence, the PCAP
of other sockets is increased by 25W.

(c) After Epoch 42, socket A
transitions to high CPU utilization,
shown in yellow. Hence, A has no
more surplus power.
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(g) All sockets are now
operating under full load.
Hence, PCAP is reset to default
PCAP (98W) at each socket.

(h) Socket B is rewarded 5W from A for 20
Epochs and 6.25W from each C and D for 40
Epochs, increasing its PCAP by 17.5W.
Meanwhile, the PCAP of A, C, and D decreases
by 5W, 6.25W, and 6.25W, respectively.

(i) After 20 Epochs, A stops
rewarding B, resetting PCAP of A to
98W and reducing PCAP of B by
5W, while other sockets continue
rewarding B for 20 more Epochs.

Epoch 99

PCAP=98W
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PCAP=104.25W

B

IDLE

C

PCAP=91.75W

D

Epoch 105

IDLE
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Epoch 108

IDLE

A

PCAP=98W

B

IDLE

C

PCAP=98W

D

(l) Socket D stopped rewarding B
as 40 Epochs of rewarding were
completed at Epoch 107. Hence
reset PCAP of B and D to 98W.

(k) At Epoch 105, socket A
has been idle now. Socket D
continues giving power to B.

(j) At Epoch 99, socket C has stopped
rewarding B as it is idle now. Hence,
the PCAP of C is reset to 98W, and the
PCAP of B is decreased by 6.25W.

Epoch 89-98
(10 Epochs)

Epoch 100-104
(5 Epochs)

Epoch 106-107
(2 Epochs)

Epoch 68-87
(20 Epochs)

Epoch 45-64
(20 Epochs)

Epoch 22-41
(20 Epochs)

15W 15W10W
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6.25W
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6.25W

6.25W

Fig. 3. KarmaPM power scheduling policy for improving throughput and fairness



Distributing unused power to busy applications Each of these four sock-
ets is initially assigned the user-set power cap of PCAPDefault=98W, which
is 65% of the Thermal Design Power (TDP), resulting in a total system-level
PCAPDefault=392W (Figure 3(a)). The KarmaPM policy begins at Epoch 20,
as illustrated in Figure 3(a). The initial two seconds, corresponding to the first
twenty Epochs, were excluded as a warmup duration (refer to Section 5.1). At
Epoch 20, the KarmaPM daemon identified that BenchA and BenchB were ex-
periencing slack, while BenchC and BenchD were operating under full load. As a
result, power usage (PUsage) for SocketA and SocketB reduced to 78W and 68W,
respectively. Hence, KarmaPM reduces the PCAP at SocketA and SocketB in
Epoch 21 to their current power consumption levels to avoid wastage of power
while simultaneously increasing the PCAP of both SocketC and SocketD by
25W (Figure 3(b)). This situation persisted for the following twenty Epochs. Af-
ter this period, the KarmaPM daemon noted that BenchA had returned to full
CPU utilization, while BenchB was still displaying slack (Figure 3(c)). KarmaPM
then equally distributed the combined surplus power of 30W from SocketC and
SocketD among all busy sockets, resulting in a PCAP of 108W for SocketA,
SocketC, and SocketD (Figure 3(d)).

Rewarding donor applications with surplus power A receiver applica-
tion is required to reward the donor application once the donor enters a busy
state to ensure fairness in the system. KarmaPM computes the average total
power donated to a application using the equation shown in Figure 2. The re-
ward power allocated to the donor application is half the average power received
by that application and is provided for the same number of total Epochs it do-
nated. Since BenchC and BenchD each received 10W from BenchA over a span
of twenty Epochs (from Epoch 22 to 41), KarmaPM subsequently rewarded
BenchA by granting 5W of power from both SocketC and SocketD (Figure 3(e))
during the following twenty Epochs (Figure 3(f)). By Epoch 65, KarmaPM rec-
ognized that BenchB had returned to full CPU utilization (Figure 3(f)). With all
four applications now busy, KarmaPM will first reset the PCAP at each socket
to PCAPDefault (Figure 3(g)) before calculating the reward power to BenchB
from BenchA, BenchC, and BenchD (see Figure 2). The average power donated
by SocketB to SocketA was 10W for 20 Epochs, while it donated 12.5W each
to SocketC and SocketD for 40 Epochs. Consequently, SocketA, SocketC, and
SocketD will reward SocketB by providing 5W, 6.25W, and 6.25W of power, re-
spectively, for 20 Epochs (Figure 3(h)). By Epoch 88, the PCAP at SocketA is
reset to the user-defined default PCAP, while SocketC and SocketD continue to
reward SocketB by contributing 6.25W each for the next 20 Epochs (Figure 3(i)).
However, after 10 Epochs, the application running at SocketC terminated. Con-
sequently, the PCAP at SocketC will be revert to the default user-set PCAP,
and SocketB will now continue receiving the reward power only from SocketD
(Figure 3(j)). The PCAP will also be reset at SocketA to the default PCAP at
Epoch 105 as its application terminated (Figure 3(k)). Finally, SocketB would



SpeedupMix =

(
n−1∏
i=0

TimeDefaultAppi

) 1
n

(
n−1∏
i=0

TimePMAppi

) 1
n

Fig. 4. Speedup from using a Power Manager (PM) with a mix of n applications

continue receiving reward power until Epoch 107, after which its PCAP will
revert to the default user-set PCAP (Figure 3(l)).

6 Experimental Evaluation

Mixes Mix1
(OpenMP/Kokkos)

Mix2
(OpenMP/Kokkos)

Mix3
(OpenMP-only)

Mix4
(OpenMP-only)

Mix5
(OpenMP-only) Mix6

App0 PathFinder CG SimpleMOC CG CG SimpleMOC
(MPI+OpenMP)

App1 MiniFE (Kokkos) MiniFE (Kokkos) PathFinder SimpleMOC SimpleMOC Pennant (MPI-only)
App2 RSBench CoMD Pennnant CoMD PathFinder -
App3 Quicksilver Pennant Quicksilver Quicksilver RSBench -

Table 1. Details of the application mixes used for evaluations

This section presents the experimental evaluation of KarmaPM using the co-
running mixes shown in Table 1. We created six mixes of co-running applications,
as shown in Table 1. The rationale behind these mixes was to create two and four
co-running pairs, combine applications that exhibit slack with those that fully
utilize CPU resources, and include different parallel programming models (shown
in the same Table). The sockets were divided equally among each co-runner in
each mix (using the taskset command). None of the applications in any mix
shared socket-local resources with others in that mix. The SimpleMOC in Mix6
was executed with two MPI ranks, each allocated to a separate socket, and each
rank used 18 OpenMP threads with affinity set to the local socket. Pennant in
the same Mix6 was executed with 36 MPI ranks spanning across two sockets. We
executed each mix ten times and reported the mean value along with a 95% con-
fidence interval. We developed a variant of KarmaPM called SimplePM, which
operates similarly to KarmaPM but does not reward the power donor sockets.
The work most closely related to SimplePM is PShifter [5], which functions at
the cluster level. We ported a single server-level implementation of PShifter to
facilitate power transfer among sockets. PShifter differs from SimplePM by its
power donation strategy, as it distributes surplus power equally among all four
sockets. In contrast, SimplePM improves this approach by allocating surplus
power exclusively to the sockets, fully utilizing CPU resources. While we eval-
uated KarmaPM on an Intel Cooperlake processor, it can be adapted for other
Intel and AMD processors by updating the specific MSRs accordingly.

Figure 5 shows the timeline of power scheduling from KarmaPM for each mix
at 65% PCAP. We can observe that the reduction in power at one socket increases
the power of the other socket without overshooting the system power budget.
A similar trend holds at the other two PCAPs. We used the formula shown in
Figure 4 to calculate the improvement in throughput over the Default execu-
tion at each of the three PCAPs by using PShifter, SimplePM, or KarmaPM



(a) Mix1 (b) Mix2 (c) Mix3

(d) Mix4 (e) Mix5 (f) Mix6

Fig. 5. Timeline of power distribution from KarmaPM across sockets at PCAP=65%
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Fig. 6. Analysis of power sensitivity and slack at each PCAP

while executing each of our six mixes [12]. The Default run uses the same set-
tings as the other three Power Managers (PMs) but does not perform power
transfers across sockets. The result of this experiment is shown in Figure 7.
Table 2 compares the speedup for individual applications between SimplePM
and KarmaPM at each PCAP. The throughput achieved by any of the three
power managers (PMs) is influenced by several factors: Point-1) the user-set
PCAP and the power sensitivity of each application at that PCAP, Point-2) the
percentage of total slack in power donor applications, Point-3) the number of
applications in the mix that possess slack, and Point-4) the number of power
receiver applications. Figure 6(a) illustrates each application’s power sensitivity
as performance loss at various PCAPs relative to the execution time at TDP.
Notably, at higher PCAPs (65% and 75%), the performance loss is minimal for
CG, MiniFE, RSBench, PathFinder, and SimpleMoC. In contrast, Quicksilver,
CoMD, and Pennant demonstrate relatively significant performance losses at
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Fig. 7. Improvement in overall system throughput at each PCAP

these two PCAPs. Figure 6(b) shows the percentage of total execution time
during which slack occurred at each PCAP level for low power sensitivity appli-
cations (MiniFE and CG) and high power sensitivity applications (SimpleMoC
and PathFinder). During slack periods, each application’s power consumption
remained below the selected PCAPs, resulting in consistent slack durations for
each application across PCAP levels. However, non-slack execution time varies
based on an application’s power sensitivity, decreasing as the PCAP increases. As
a result, the slack percentage increases with higher PCAP levels in SimpleMoC
and PathFinder (Figure 6(b)). This rising slack proportion causes these highly
power-sensitive applications to appear relatively less sensitive in Figure 6(a).

Performance improvement relative to Default (in %)
PCAP=55% PCAP=65% PCAP=75%Mixes Policy App0 App1 App2 App3 App0 App1 App2 App3 App0 App1 App2 App3

PShifter -0.7 -0.7 0.6 -0.1 0.2 1.2 3.0 3.6 -0.1 0.2 0.3 0.0
SimplePM -0.5 3.0 5.4 8.2 0.2 2.0 4.0 7.2 -0.3 0.0 1.3 10.2Mix1
KarmaPM 36.9 8.5 3.8 3.1 3.8 3.1 2.1 4.1 0.5 -0.4 0.1 8.7
PShifter -0.3 0.4 1.2 -0.2 0.8 0.3 3.2 2.2 3.1 1.7 0.5 -0.7

SimplePM 0.0 0.0 5.5 2.5 0.6 0.5 4.4 5.5 1.9 0.9 5.7 14.5Mix2
KarmaPM 0.5 8.3 4.3 3.8 2.2 1.6 0.1 5.5 0.6 1.4 2.1 16.6
PShifter 0.3 7.8 1.5 -0.2 1.2 -0.1 7.6 9.2 1.1 -0.1 -0.8 0.2

SimplePM 4.7 2.1 3.0 15.2 0.6 -0.1 16.2 14.2 -0.7 -0.3 25.7 10.4Mix3
KarmaPM 43.4 22.6 4.7 17.9 3.9 2.4 11.7 8.9 1.4 0.7 3.4 10.6
PShifter 0.4 0.6 1.0 -1.9 -0.5 1.0 4.7 5.9 3.3 1.2 -0.1 -0.5

SimplePM 0.6 1.1 6.6 13.7 0.2 3.0 6.3 6.2 1.0 0.8 7.4 9.1Mix4
KarmaPM 1.1 32.7 4.0 7.4 1.7 6.7 0.5 3.9 1.7 2.1 5.1 7.3
PShifter 0.5 0.3 -2.5 4.8 2.3 3.5 1.0 8.2 2.7 1.3 -0.1 0.2

SimplePM 2.0 24.7 -0.4 10.9 3.7 2.8 1.0 9.4 1.9 2.7 0.1 2.6Mix5
KarmaPM 2.3 37.3 9.7 8.7 3.0 6.0 3.7 4.1 2.2 2.7 0.6 0.5
PShifter 2.7 0.6 - - 5.4 1.0 - - -0.3 8.1 - -

SimplePM 1.0 3.1 - - -0.8 53.1 - - -0.7 49.2 - -Mix6
KarmaPM 26.3 15.2 - - 1.6 48.1 - - 0.6 45.8 - -

Table 2. Speedup by three PMs for individual applications across mixes at each PCAPs

6.1 Speedup at Higher PCAPs (65% and 75%)

Mix6 achieved significantly higher throughput at higher PCAPs with SimplePM
and KarmaPM compared to all other mixes (53% at PCAP=65% and 49% at



PCAP=75%). In this case, a single power-sensitive application (Pennant) re-
ceived the donated power, leading to substantial performance gains. As shown
in Figure 5(f), SimpleMOC donated power from its slack region to Pennant
and briefly received reward power in return. However, since Pennant terminated
shortly thereafter, the throughput remained similar for both SimplePM and
KarmaPM. Despite overall system throughput being the same in this mix, un-
like SimplePM, KarmaPM promoted fairness by improving the speedup of Sim-
pleMOC (see Table 2). Mix3 showed marginally better throughput with Sim-
plePM (7.5% at PCAP=65% and 8.2% at PCAP=75%) and KarmaPM (6.6%
at PCAP=65% and 3.9% at PCAP=75%). It was primarily due to the over-
lapping slack regions in SimpleMoC and PathFinder. However, at 75% PCAP,
SimplePM achieved comparatively higher throughput than KarmaPM. This dif-
ference arises from KarmaPM’s reward policy, prioritising fairness by distribut-
ing speedup improvements across all applications. As shown in Table 2, Sim-
plePM only enhanced the speedup of Pennant and Quicksilver in Mix3, whereas
KarmaPM promoted fairness by boosting the speedup of other co-runners. Mix2
and Mix4 contain two applications with slack regions (CG and MiniFE in Mix2,
CG and SimpleMoC in Mix4). However, unlike Mix3, their slack periods do
not fully overlap, leading to only minor and similar throughput improvements
at both PCAPs (up to 5.6%). Although CG experiences slack twice, only the
first instance overlaps with another application’s slack. Mix1 has a single appli-
cation sensitive to these two PCAPs (Quicksilver), whereas Mix5 lacks any of
the three power-sensitive applications, so these two pairs performed similarly to
Default. Overall, at each of these two high PCAPs, KarmaPM attained fairness
in each mix by enhancing the speedup of each application through its power re-
ward policy (Table 2). Overall, PShifter performed worse than both SimplePM
and KarmaPM across all mixes and PCAPs, including PCAP=55%. It was de-
signed for cluster environments with many nodes, where a node’s surplus power
is evenly distributed among the rest of the nodes in the cluster. In a large cluster,
the proportion of nodes experiencing slack (at the same time) is lower than that
of sockets experiencing slack in a single multiprocessor server. While effective at
the cluster level, this approach is less suitable for a single-server environment.

6.2 Speedup at Lower PCAP (55%)

At lower PCAP, KarmaPM performed better than SimplePM in all mixes. The
improvement in throughput in KarmaPM relative to SimplePM were 8% in Mix1,
2.2% in Mix2, 14.3% in Mix3, 5% in Mix4, 4.4% in Mix5, and 15.4% in Mix6 (ge-
omean improvement of 6.6% over SimplePM and 12% over Default). At the same
time, owing to its novel reward policy, unlike SimplePM, it significantly improved
the speedup of the slack-experiencing applications in each mix (Table 2). MiniFE
and CG were exceptions. Despite experiencing slack, their insensitivity to power
means that even at low PCAP (Figure 6(a)), receiving reward power results
in only marginal performance gains. In contrast, SimpleMoC and PathFinder,
despite experiencing slack, showed notable performance improvements when re-
ceiving reward power. Among the four applications that do not experience slack,



QuickSilver, CoMD, and Pennant exhibited high sensitivity to power transfers
at low PCAPs. As a result, their performance was significantly influenced by
both receiving and donating power. KarmaPM achieved the highest through-
put improvements in Mix3 and Mix6. It was due to the high-power sensitivity
applications in both mixes and overlapping slacks in Mix3 (SimpleMOC and
PathFinder). The effect of KarmaPM was least visible in Mix2 because MiniFE
had a comparatively short slack region (Figure 6(b)), with some slack instances
not overlapping with that in CG (Figure 1(a)). SimplePM’s performance was
best in Mix5 due to three applications exhibiting slack (CG, SimpleMoC, and
PathFinder).

At present, KarmaPM redistributes unused power from one application to
others in equal shares without considering the power sensitivity of the receiver
applications. In future work, we intend to improve KarmaPM by making power
distribution sensitivity-aware. Similarly, KarmaPM will transfer reward power
based on the power sensitivity of the recipient application.

6.3 Energy Usage
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Fig. 8. Geomean energy usage at all
PCAPs relative to Default for each mix

Figure 8 shows the geometric mean
energy consumption of SimplePM and
KarmaPM at each PCAP for all
mixes relative to Default. Overall,
KarmaPM consumed less energy than
Default across all mixes, with savings
ranging from -0.1% to 7.9%. Except
for Mix3, KarmaPM’s energy use was
comparable to or lower than that of SimplePM. The higher energy usage in Mix3
arises from SimplePM achieving greater system throughput than KarmaPM at
higher PCAPs (see Section 6.1). In Mix2, Mix4, and Mix5, both KarmaPM
and SimplePM showed similar energy usage due to CG, a low power-sensitive
application, resulting in comparable performance at higher PCAPs. In Mix1
and Mix6, although both KarmaPM and SimplePM achieved similar through-
put, KarmaPM consumed 4.9% and 5.3% less energy, respectively, due to the
presence of two highly power-sensitive applications that experienced slack and
benefited from KarmaPM’s reward mechanism.

7 Conclusion

This paper proposes a programming model oblivious power management solu-
tion for multiprocessor servers to improve system throughput and application
fairness under a limited power budget for co-running parallel applications. Our
approach uses a novel reward-based scheme to boost the performance of a power
donor application by rewarding them with additional power usage based on their
previous power donation activities to other co-running applications. Our empir-
ical results demonstrate that our reward-driven power management solution can
achieve better throughput and energy savings than traditional approaches.
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