KarmaPM: Reward-Driven Power Manager

Author Name: Sunil Kumar and Vivek Kumar

IIIT Delhi, India

Outline

- ✓ Introduction
- ✓ Motivation
- ✓ Related Work
- ✓ Contribution
- ✓ Implementation
- ✓ Results
- ✓ Summary

Introduction

Global Perspective on Computing Power

Power demand in the data centres

Power usage at supercomputers

- 1. https://www.iea.org/reports/energy-and-ai
- 2. Patki et.al. [ICS2025]

It is extremely essential to improve power efficiency

Introduction

Hardware Overprovisioning using Power cap

System running under 50% of TDP

- Servers are designed to operate within the Thermal Design Power (TDP) limit
 - TDP is the maximum power limit
- Power capping (PCAP) restricts power usage below TDP
 - Allows using more servers within the same power budget

Motivational Analysis

Issues with Power Capping

Power usage changes throughout the application execution Job_B fully utilizes the available power, whereas Job_A only partially utilizes it

Motivational Analysis

Issues with Power Capping

Power usage changes throughout the application execution Job_{B} fully utilizes the available power, whereas Job_{A} only partially utilizes it

Motivational Analysis

Issues with Power Capping

Power usage changes throughout the application execution

Job_B fully utilizes the available power, whereas Job_A only partially utilizes it

Improving Performance under PCAP

Overall system throughput improved by 3.3% (geometric mean of speedup of each application over baseline)

Improving Performance under PCAP

Overall system throughput improved by 3.3% (geometric mean of speedup of each application over baseline)

Overall system throughput improved by 3.3% (geometric mean of speedup of each application over baseline)

Overall system throughput improved by 3.3% (geometric mean of speedup of each application over baseline)

Contributions

- ✓ KarmaPM: A library-based power management system
 - ✓ A light-weight daemon that dynamically reallocates power by profiling hardware performance counters
 - ✓ ML model-free and oblivious to the parallel programming models
- ✓ Enables bi-directional power transfer between co-running jobs
 - ✓ A novel reward mechanism that improves both throughput and fairness
- ✓ Experimental evaluations on a quad-socket 72-core Intel Xeon processor
 - ✓ Using several exascale proxy applications (MPI, OpenMP and Kokkos)
- ✓ Results
 - ✓ Our results show that KarmaPM can substantially improve the system throughput and application-level fairness.

High-level Architecture of KarmaPM

KarmaPM Policy

- Job_A starts with low power usage, Job_B with high power usage
- KarmaPM transfers 15W surplus power from Socket0 to Socket1 at t=0
 - Similar to existing approaches

KarmaPM Policy

- Job_A starts with low power usage, Job_B with high power usage
- KarmaPM transfers 15W surplus power from Socket0 to Socket1 at t=0
 - Similar to existing approaches
- After 22s, Job_A resumes using full power
 - KarmaPM resets PCAP on the server
- KarmaPM rewards Job_A by returning 50% of the previously transferred power to Job_B for the same duration (next 22s)
 - Provides application-level fairness

KarmaPM Policy

- Job_A starts with low power usage, Job_B with high power usage
- KarmaPM transfers 15W surplus power from Socket0 to Socket1 at t=0
 - Similar to existing approaches
- After 22s, Job_A resumes using full power
 - KarmaPM resets PCAP on the server
- KarmaPM rewards Job_A by returning 50% of the previously transferred power to Job_B for the same duration (next 22s)
 - Provides application-level fairness
- Execution continues with the user-set
 PCAP at JobA and JobB after t=44

Experimental Methodology

Exascale OpenMP proxy applications

✓ Pennant

- ✓ SimpleMOC (MPI)
- ✓ MiniFE (Kokkos)
- ✓ PathFinder

- ✓ Quicksilver
- ✓ RSBench
- ✓ CoMD (Kokkos)
- ✓ CG (NPB suite)

Hardware platform

- ✓ Quad socket Intel Xeon Cooper Lake
 - ✓ **18** cores per socket
 - ✓ TDP per socket = 150 Watts

Mix Type	Number of Mixes	Socket Binding
4 Applications	5	Each application uses one socket
2 Applications	1	Each application uses two socket

Evaluated using three PCAP settings, 55%, 65%, and 75% of TDP

Throughput and Fairness from KarmaPM

Throughput and Fairness from KarmaPM

Throughput and Fairness from KarmaPM

System Throughput from KarmaPM

- KarmaPM improves both throughput and fairness at low PCAP
- At higher PCAPs, KarmaPM improves fairness without affecting throughput

Conclusion and Future Work

Summary

- Hardware overprovisioning using power capping addresses the increasing computing power demand
 - However, PCAP degrades the application performance
- Running applications in pairs on a single server provides an opportunity to reduce power wastage by transferring unused power from one application to other
 - However, this approach does not support application-level fairness
- **KarmaPM** uses a novel reward-driven bi-directional power transfer mechanism that improves both throughput and application-level fairness
- In future, we plan to extend KarmaPM for heterogeneous architecture (CPU+GPU)

Q&A

Acknowledgement

This research is supported by Google PhD Fellowship 2022

